import gradio as gr from fastai.vision.all import * import skimage import pathlib plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, idx, probs = learn.predict(img) return{labels[i]: float(probs[i]) for i in range(len(labels))} title = "Breed Classifier" description = "A animal/pet Breed Classifier" examples = ['cat.jpg.webp'] interpretation = 'default' enable_queue = True gr.Interface(fn = predict, inputs = gr.Image(), outputs = gr.Label(num_top_classes = 3), title = title, description = description , examples = examples).launch(share=True)