Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
import jax | |
import jax.numpy as jnp | |
from diffusers import StableDiffusionInpaintPipeline | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from PIL import Image | |
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator | |
from diffusers import ( | |
UniPCMultistepScheduler, | |
FlaxStableDiffusionControlNetPipeline, | |
FlaxControlNetModel, | |
) | |
import colorsys | |
sam_checkpoint = "sam_vit_h_4b8939.pth" | |
model_type = "vit_h" | |
device = "cpu" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam.to(device=device) | |
predictor = SamPredictor(sam) | |
mask_generator = SamAutomaticMaskGenerator(sam) | |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
"mfidabel/controlnet-segment-anything", dtype=jnp.float32 | |
) | |
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=controlnet, | |
revision="flax", | |
dtype=jnp.bfloat16, | |
) | |
params["controlnet"] = controlnet_params | |
p_params = replicate(params) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to(device) | |
with gr.Blocks() as demo: | |
gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation") | |
gr.Markdown( | |
""" | |
We have trained a JAX ControlNet model with | |
To try the demo, upload an image and select object(s) you want to inpaint. | |
Write a prompt & a negative prompt to control the inpainting. | |
Click on the "Submit" button to inpaint the selected object(s). | |
Check "Background" to inpaint the background instead of the selected object(s). | |
If the demo is slow, clone the space to your own HF account and run on a GPU. | |
""" | |
) | |
with gr.Row(): | |
input_img = gr.Image(label="Input") | |
mask_img = gr.Image(label="Mask", interactive=False) | |
output_img = gr.Image(label="Output", interactive=False) | |
with gr.Row(): | |
prompt_text = gr.Textbox(lines=1, label="Prompt") | |
negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt") | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
clear = gr.Button("Clear") | |
def generate_mask(image, evt: gr.SelectData): | |
predictor.set_image(image) | |
input_point = np.array([120, 21]) | |
input_label = np.ones(input_point.shape[0]) | |
mask, _, _ = predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
multimask_output=False, | |
) | |
# clear torch cache | |
torch.cuda.empty_cache() | |
mask = Image.fromarray(mask[0, :, :]) | |
segs = mask_generator.generate(image) | |
boolean_masks = [s["segmentation"] for s in segs] | |
finseg = np.zeros( | |
(boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8 | |
) | |
# Loop over the boolean masks and assign a unique color to each class | |
for class_id, boolean_mask in enumerate(boolean_masks): | |
hue = class_id * 1.0 / len(boolean_masks) | |
rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1)) | |
rgb_mask = np.zeros( | |
(boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8 | |
) | |
rgb_mask[:, :, 0] = boolean_mask * rgb[0] | |
rgb_mask[:, :, 1] = boolean_mask * rgb[1] | |
rgb_mask[:, :, 2] = boolean_mask * rgb[2] | |
finseg += rgb_mask | |
torch.cuda.empty_cache() | |
return mask, finseg | |
def infer( | |
image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4 | |
): | |
try: | |
rng = jax.random.PRNGKey(int(seed)) | |
num_inference_steps = int(num_inference_steps) | |
image = Image.fromarray(image, mode="RGB") | |
num_samples = max(jax.device_count(), int(num_samples)) | |
p_rng = jax.random.split(rng, jax.device_count()) | |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
negative_prompt_ids = pipe.prepare_text_inputs( | |
[negative_prompts] * num_samples | |
) | |
processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
prompt_ids = shard(prompt_ids) | |
negative_prompt_ids = shard(negative_prompt_ids) | |
processed_image = shard(processed_image) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
image=processed_image, | |
params=p_params, | |
prng_seed=p_rng, | |
num_inference_steps=num_inference_steps, | |
neg_prompt_ids=negative_prompt_ids, | |
jit=True, | |
).images | |
del negative_prompt_ids | |
del processed_image | |
del prompt_ids | |
output = output.reshape((num_samples,) + output.shape[-3:]) | |
final_image = [np.array(x * 255, dtype=np.uint8) for x in output] | |
print(output.shape) | |
del output | |
except Exception as e: | |
print("Error: " + str(e)) | |
final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples | |
finally: | |
gc.collect() | |
return final_image | |
def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg): | |
img = None | |
mask = None | |
seg = None | |
out = None | |
prompt = "" | |
neg_prompt = "" | |
bg = False | |
return img, mask, seg, out, prompt, neg_prompt, bg | |
input_img.change( | |
generate_mask, | |
inputs=[input_img], | |
outputs=[mask_img], | |
) | |
submit.click( | |
infer, | |
inputs=[mask_img, prompt_text, negative_prompt_text], | |
outputs=[output_img], | |
) | |
clear.click( | |
_clear, | |
inputs=[ | |
input_img, | |
mask_img, | |
output_img, | |
prompt_text, | |
negative_prompt_text, | |
], | |
outputs=[ | |
input_img, | |
mask_img, | |
output_img, | |
prompt_text, | |
negative_prompt_text, | |
], | |
) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch() | |