Johannes commited on
Commit
2815d9f
1 Parent(s): f60e77b

stack masks

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -47,6 +47,7 @@ with gr.Blocks() as demo:
47
  gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation")
48
  gr.Markdown(
49
  """
 
50
  ### About
51
  We have trained a JAX ControlNet model for semantic segmentation on Wildlife Animal Images.
52
 
@@ -73,13 +74,14 @@ with gr.Blocks() as demo:
73
 
74
  def generate_mask(image):
75
  outputs = generator(image, points_per_batch=256)
76
-
77
  for mask in outputs["masks"]:
78
  color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0)
79
  h, w = mask.shape[-2:]
80
  mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
 
81
 
82
- return mask_image
83
 
84
  # predictor.set_image(image)
85
  # input_point = np.array([120, 21])
 
47
  gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation")
48
  gr.Markdown(
49
  """
50
+ ## Work in Progress
51
  ### About
52
  We have trained a JAX ControlNet model for semantic segmentation on Wildlife Animal Images.
53
 
 
74
 
75
  def generate_mask(image):
76
  outputs = generator(image, points_per_batch=256)
77
+ mask_images = []
78
  for mask in outputs["masks"]:
79
  color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0)
80
  h, w = mask.shape[-2:]
81
  mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
82
+ mask_images.append(mask_image)
83
 
84
+ return np.stack(mask_images)
85
 
86
  # predictor.set_image(image)
87
  # input_point = np.array([120, 21])