import gradio as gr import numpy as np import torch import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from PIL import Image from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator from diffusers import ( FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel, ) from transformers import pipeline import colorsys sam_checkpoint = "sam_vit_h_4b8939.pth" model_type = "vit_h" device = "cuda" if torch.cuda.is_available() else "cpu" #sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) #sam.to(device=device) #predictor = SamPredictor(sam) #mask_generator = SamAutomaticMaskGenerator(sam) generator = pipeline(model="facebook/sam-vit-base", task="mask-generation", points_per_batch=256) #image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16, ) params["controlnet"] = controlnet_params p_params = replicate(params) with gr.Blocks() as demo: gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation") gr.Markdown( """ ### About We have trained a JAX ControlNet model for semantic segmentation on Wildlife Animal Images. For the training data creation we used the [Wildlife Animals Images](https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images) dataset. We created segmentation masks with the help of [Grounded SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) where we used the animals names as input prompts for detection and more accurate segmentation. ### How To Use """ ) with gr.Row(): input_img = gr.Image(label="Input", type="pil") mask_img = gr.Image(label="Mask", interactive=False) output_img = gr.Image(label="Output", interactive=False) with gr.Row(): prompt_text = gr.Textbox(lines=1, label="Prompt") negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt") with gr.Row(): submit = gr.Button("Submit") clear = gr.Button("Clear") def generate_mask(image): outputs = generator(image, points_per_batch=256) for mask in outputs["masks"]: color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) return mask_image # predictor.set_image(image) # input_point = np.array([120, 21]) # input_label = np.ones(input_point.shape[0]) # mask, _, _ = predictor.predict( # point_coords=input_point, # point_labels=input_label, # multimask_output=False, # ) # clear torch cache # torch.cuda.empty_cache() # mask = Image.fromarray(mask[0, :, :]) # segs = mask_generator.generate(image) # boolean_masks = [s["segmentation"] for s in segs] # finseg = np.zeros( # (boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8 # ) # # Loop over the boolean masks and assign a unique color to each class # for class_id, boolean_mask in enumerate(boolean_masks): # hue = class_id * 1.0 / len(boolean_masks) # rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1)) # rgb_mask = np.zeros( # (boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8 # ) # rgb_mask[:, :, 0] = boolean_mask * rgb[0] # rgb_mask[:, :, 1] = boolean_mask * rgb[1] # rgb_mask[:, :, 2] = boolean_mask * rgb[2] # finseg += rgb_mask # torch.cuda.empty_cache() # return mask def infer( image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4 ): try: rng = jax.random.PRNGKey(int(seed)) num_inference_steps = int(num_inference_steps) image = Image.fromarray(image, mode="RGB") num_samples = max(jax.device_count(), int(num_samples)) p_rng = jax.random.split(rng, jax.device_count()) prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) negative_prompt_ids = pipe.prepare_text_inputs( [negative_prompts] * num_samples ) processed_image = pipe.prepare_image_inputs([image] * num_samples) prompt_ids = shard(prompt_ids) negative_prompt_ids = shard(negative_prompt_ids) processed_image = shard(processed_image) output = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=p_rng, num_inference_steps=num_inference_steps, neg_prompt_ids=negative_prompt_ids, jit=True, ).images del negative_prompt_ids del processed_image del prompt_ids output = output.reshape((num_samples,) + output.shape[-3:]) final_image = [np.array(x * 255, dtype=np.uint8) for x in output] print(output.shape) del output except Exception as e: print("Error: " + str(e)) final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples finally: gc.collect() return final_image def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg): img = None mask = None seg = None out = None prompt = "" neg_prompt = "" bg = False return img, mask, seg, out, prompt, neg_prompt, bg input_img.change( generate_mask, inputs=[input_img], outputs=[mask_img], ) submit.click( infer, inputs=[mask_img, prompt_text, negative_prompt_text], outputs=[output_img], ) clear.click( _clear, inputs=[ input_img, mask_img, output_img, prompt_text, negative_prompt_text, ], outputs=[ input_img, mask_img, output_img, prompt_text, negative_prompt_text, ], ) if __name__ == "__main__": demo.queue() demo.launch()