File size: 1,618 Bytes
d72ad25
 
 
e143977
 
c2551f6
06ba20f
 
 
 
 
367823f
06ba20f
367823f
 
d72ad25
 
 
 
 
 
 
 
 
e143977
367823f
 
 
 
 
 
c4de414
367823f
 
c4de414
367823f
 
c5f6a7a
367823f
 
c5f6a7a
367823f
 
e143977
367823f
 
 
 
 
 
 
 
e143977
367823f
 
c5f6a7a
367823f
 
e143977
367823f
 
e143977
367823f
 
e143977
367823f
 
e143977
 
367823f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from fastapi import FastAPI
import torch
import torch.nn as nn
import torch
from torchvision import transforms

from typing import Any, Type

import torch

class TorchTensor(torch.Tensor):
 pass

class Prediction():
 prediction: TorchTensor

app = FastAPI()

# Load the PyTorch model
model = torch.load("best_model-epoch=01-val_loss=3.00.ckpt")

# Define a function to preprocess the input


def preprocess_input(input):
 """Preprocess the input image for the PyTorch image classification model.
 Args:
  input: A PIL Image object.
 Returns:
  A PyTorch tensor representing the preprocessed image.
 """

 # Resize the image to the expected size.
 input = input.resize((224, 224))

 # Convert the image to a PyTorch tensor.
 input = torch.from_numpy(np.array(input)).float()

 # Normalize the image.
 input = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(input)

 # Return the preprocessed image.
 return input

@app.post("/predict")
async def predict_endpoint(input: Any):
 """Predict the output of the PyTorch image classification model.
 Args:
  input: A file containing the input image.
 Returns:
  A JSON object containing the prediction.
 """

 # Load the image.
 image = Image.open(BytesIO(input))

 # Preprocess the image.
 image = preprocess_input(image)

 # Make a prediction.
 prediction = model(image.unsqueeze(0))

 # Get the top predicted class.
 predicted_class = prediction.argmax(1)

 # Return the prediction.
 return {"prediction": predicted_class.item()}


if _name_ == "_main_":
 import uvicorn
 uvicorn.run(app, host="0.0.0.0", port=8000)