File size: 1,723 Bytes
d72ad25
 
 
 
e143977
 
c2551f6
d72ad25
 
 
 
 
 
 
 
 
 
 
e143977
 
c4de414
e143977
 
c4de414
e143977
 
 
c5f6a7a
e143977
 
c5f6a7a
e143977
 
 
 
 
 
 
 
c5f6a7a
c4de414
e143977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72ad25
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from fastapi import FastAPI
from pydantic import BaseModel
import torch
import torch.nn as nn
import torch
from torchvision import transforms

class Prediction(BaseModel):
    prediction: torch.Tensor

app = FastAPI()

# Load the PyTorch model
model = torch.load("best_model-epoch=01-val_loss=3.00.ckpt")

# Define a function to preprocess the input


def preprocess_input(input):
    """Preprocess the input image for the PyTorch image classification model.

    Args:
        input: A PIL Image object.

    Returns:
        A PyTorch tensor representing the preprocessed image.
    """

    # Resize the image to the expected size.
    input = input.resize((224, 224))

    # Convert the image to a PyTorch tensor.
    input = torch.from_numpy(np.array(input)).float()

    # Normalize the image.
    input = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(input)

    # Return the preprocessed image.
    return input

@app.post("/predict", response_model=Prediction)
async def predict_endpoint(input: fastapi.File):
    """Predict the output of the PyTorch image classification model.

    Args:
        input: A file containing the input image.

    Returns:
        A JSON object containing the prediction.
    """

    # Load the image.
    image = await input.read()
    image = Image.open(BytesIO(image))

    # Preprocess the image.
    image = preprocess_input(image)

    # Make a prediction.
    prediction = model(image.unsqueeze(0))

    # Get the top predicted class.
    predicted_class = prediction.argmax(1)

    # Return the prediction.
    return Prediction(prediction=predicted_class)


if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)