Spaces:
Running
Running
File size: 5,486 Bytes
004c9d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
+++ venv/lib/python3.10/site-packages/selfcontact/body_segmentation.py
@@ -14,6 +14,8 @@
#
# Contact: ps-license@tuebingen.mpg.de
+from pathlib import Path
+
import torch
import trimesh
import torch.nn as nn
@@ -22,6 +24,17 @@
from .utils.mesh import winding_numbers
+
+def load_pkl(path):
+ with open(path, "rb") as fin:
+ return pickle.load(fin)
+
+
+def save_pkl(obj, path):
+ with open(path, "wb") as fout:
+ pickle.dump(obj, fout)
+
+
class BodySegment(nn.Module):
def __init__(self,
name,
@@ -63,9 +76,17 @@
self.register_buffer('segment_faces', segment_faces)
# create vector to select vertices form faces
- tri_vidx = []
- for ii in range(faces.max().item()+1):
- tri_vidx += [torch.nonzero(faces==ii)[0].tolist()]
+ segments_folder = Path(segments_folder)
+ tri_vidx_path = segments_folder / "tri_vidx.pkl"
+ if not tri_vidx_path.is_file():
+ tri_vidx = []
+ for ii in range(faces.max().item()+1):
+ tri_vidx += [torch.nonzero(faces==ii)[0].tolist()]
+
+ save_pkl(tri_vidx, tri_vidx_path)
+ else:
+ tri_vidx = load_pkl(tri_vidx_path)
+
self.register_buffer('tri_vidx', torch.tensor(tri_vidx))
def create_band_faces(self):
@@ -149,7 +170,7 @@
self.segmentation = {}
for idx, name in enumerate(names):
self.segmentation[name] = BodySegment(name, faces, segments_folder,
- model_type).to('cuda')
+ model_type).to(device)
def batch_has_self_isec_verts(self, vertices):
"""
+++ venv/lib/python3.10/site-packages/selfcontact/selfcontact.py
@@ -41,6 +41,7 @@
test_segments=True,
compute_hd=False,
buffer_geodists=False,
+ device="cuda",
):
super().__init__()
@@ -95,7 +96,7 @@
if self.test_segments:
sxseg = pickle.load(open(segments_bounds_path, 'rb'))
self.segments = BatchBodySegment(
- [x for x in sxseg.keys()], faces, segments_folder, self.model_type
+ [x for x in sxseg.keys()], faces, segments_folder, self.model_type, device=device,
)
# load regressor to get high density mesh
@@ -106,7 +107,7 @@
torch.tensor(hd_operator['values']),
torch.Size(hd_operator['size']))
self.register_buffer('hd_operator',
- torch.tensor(hd_operator).float())
+ hd_operator.clone().detach().float())
with open(point_vert_corres_path, 'rb') as f:
hd_geovec = pickle.load(f)['faces_vert_is_sampled_from']
@@ -135,9 +136,13 @@
# split because of memory into two chunks
exterior = torch.zeros((bs, nv), device=vertices.device,
dtype=torch.bool)
- exterior[:, :5000] = winding_numbers(vertices[:,:5000,:],
+ exterior[:, :3000] = winding_numbers(vertices[:,:3000,:],
triangles).le(0.99)
- exterior[:, 5000:] = winding_numbers(vertices[:,5000:,:],
+ exterior[:, 3000:6000] = winding_numbers(vertices[:,3000:6000,:],
+ triangles).le(0.99)
+ exterior[:, 6000:9000] = winding_numbers(vertices[:,6000:9000,:],
+ triangles).le(0.99)
+ exterior[:, 9000:] = winding_numbers(vertices[:,9000:,:],
triangles).le(0.99)
# check if intersections happen within segments
@@ -173,9 +178,13 @@
# split because of memory into two chunks
exterior = torch.zeros((bs, np), device=points.device,
dtype=torch.bool)
- exterior[:, :6000] = winding_numbers(points[:,:6000,:],
+ exterior[:, :3000] = winding_numbers(points[:,:3000,:],
+ triangles).le(0.99)
+ exterior[:, 3000:6000] = winding_numbers(points[:,3000:6000,:],
triangles).le(0.99)
- exterior[:, 6000:] = winding_numbers(points[:,6000:,:],
+ exterior[:, 6000:9000] = winding_numbers(points[:,6000:9000,:],
+ triangles).le(0.99)
+ exterior[:, 9000:] = winding_numbers(points[:,9000:,:],
triangles).le(0.99)
return exterior
@@ -371,6 +380,23 @@
return hd_v2v_mins, hd_exteriors, hd_points, hd_faces_in_contacts
+ def verts_in_contact(self, vertices, return_idx=False):
+
+ # get pairwise distances of vertices
+ v2v = self.get_pairwise_dists(vertices, vertices, squared=True)
+
+ # mask v2v with eucledean and geodesic dsitance
+ euclmask = v2v < self.euclthres**2
+ mask = euclmask * self.geomask
+
+ # find closes vertex in contact
+ in_contact = mask.sum(1) > 0
+
+ if return_idx:
+ in_contact = torch.where(in_contact)
+
+ return in_contact
+
class SelfContactSmall(nn.Module):
+++ venv/lib/python3.10/site-packages/selfcontact/utils/mesh.py
@@ -82,7 +82,7 @@
if valid_vals > 0:
loss = (mask * dists).sum() / valid_vals
else:
- loss = torch.Tensor([0]).cuda()
+ loss = mask.new_tensor([0])
return loss
def batch_index_select(inp, dim, index):
@@ -103,6 +103,7 @@
xx = torch.bmm(x, x.transpose(2, 1))
yy = torch.bmm(y, y.transpose(2, 1))
zz = torch.bmm(x, y.transpose(2, 1))
+ use_cuda = x.device.type == "cuda"
if use_cuda:
dtype = torch.cuda.LongTensor
else:
|