Spaces:
Running
Running
File size: 6,680 Bytes
78d75d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import itertools
import functools
import math
import multiprocessing
from pathlib import Path
import matplotlib
matplotlib.rcParams.update({'font.size': 24})
matplotlib.rcParams.update({
"text.usetex": True,
"text.latex.preamble": r"\usepackage{biolinum} \usepackage{libertineRoman} \usepackage{libertineMono} \usepackage{biolinum} \usepackage[libertine]{newtxmath}",
'ps.usedistiller': "xpdf",
})
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import tqdm
from scipy.stats import wasserstein_distance
import pose_estimation
def cub(x, a, b, c):
x2 = x * x
x3 = x2 * x
y = a * x3 + b * x2 + c * x
return y
def subsample(a, p=0.0005, seed=0):
np.random.seed(seed)
N = len(a)
inds = np.random.choice(range(N), size=int(p * N))
a = a[inds].copy()
return a
def read_cos_opt(path, fname="cos_hist.npy"):
cos_opt = []
for p in Path(path).rglob(fname):
d = np.load(p)
cos_opt.append(d)
cos_opt = np.array(cos_opt)
return cos_opt
def plot_hist(cos_opt_dir, hist_smpl_fpath, params, out_dir, bins=10, xy=None):
cos_opt = read_cos_opt(cos_opt_dir)
angle_opt = np.arccos(cos_opt)
angle_opt2 = cub(angle_opt, *params)
cos_opt2 = np.cos(angle_opt2)
cos_smpl = np.load(hist_smpl_fpath)
# cos_smpl = subsample(cos_smpl)
print(cos_smpl.shape)
cos_smpl = np.clip(cos_smpl, -1, 1)
cos_opt = angle_opt
cos_opt2 = angle_opt2
cos_smpl = np.arccos(cos_smpl)
cos_opt = 180 / math.pi * cos_opt
cos_opt2 = 180 / math.pi * cos_opt2
cos_smpl = 180 / math.pi * cos_smpl
max_range = 90 # math.pi / 2
xticks = [0, 15, 30, 45, 60, 75, 90]
for idx, bone in enumerate(pose_estimation.SKELETON):
i, j = bone
i_name = pose_estimation.KPS[i]
j_name = pose_estimation.KPS[j]
if i_name != "Left Upper Leg":
continue
name = f"{i_name}_{j_name}"
gs = gridspec.GridSpec(2, 4)
fig = plt.figure(tight_layout=True, figsize=(16, 8), dpi=300)
ax0 = fig.add_subplot(gs[0, 0])
ax0.hist(cos_smpl[:, idx], bins=bins, range=(0, max_range), density=True)
ax0.set_xticks(xticks)
ax0.tick_params(labelbottom=False, labelleft=True)
ax1 = fig.add_subplot(gs[1, 0], sharex=ax0)
ax1.hist(cos_opt[:, idx], bins=bins, range=(0, max_range), density=True)
ax1.set_xticks(xticks)
if xy is not None:
ax2 = fig.add_subplot(gs[:, 1:3])
ax2.plot(xy[0], xy[1], linewidth=8)
ax2.plot(xy[0], xy[0], linewidth=4, linestyle="dashed")
ax2.set_xticks(xticks)
ax2.set_yticks(xticks)
ax3 = fig.add_subplot(gs[0, 3], sharey=ax0)
ax3.hist(cos_opt2[:, idx], bins=bins, range=(0, max_range), density=True)
ax3.set_xticks(xticks)
ax3.tick_params(labelbottom=False, labelleft=False)
ax4 = fig.add_subplot(gs[1, 3], sharex=ax3, sharey=ax1)
alpha = 0.5
ax4.hist(cos_opt[:, idx], bins=bins, range=(0, max_range), density=True, label=r"$\mathcal{B}_i$", alpha=alpha)
ax4.hist(cos_opt2[:, idx], bins=bins, range=(0, max_range), density=True, label=r"$f(\mathcal{B}_i)$", alpha=alpha)
ax4.hist(cos_smpl[:, idx], bins=bins, range=(0, max_range), density=True, label=r"$\mathcal{A}_i$", alpha=alpha)
ax4.set_xticks(xticks)
ax4.tick_params(labelbottom=True, labelleft=False)
ax4.legend()
fig.savefig(out_dir / f"hist_{name}.png")
plt.close()
def kldiv(p_hist, q_hist):
wd = wasserstein_distance(p_hist, q_hist)
return wd
def calc_histogram(x, bins=10, range=(0, 1)):
h, _ = np.histogram(x, bins=bins, range=range, density=True)
return h
def step(params, angles_opt, p_hist, bone_idx=None):
if sum(params) > 1:
return math.inf, params
kl = 0
for i, _ in enumerate(pose_estimation.SKELETON):
if bone_idx is not None and i != bone_idx:
continue
angles_opt2 = cub(angles_opt[:, i], *params)
if angles_opt2.max() > 1 or angles_opt2.min() < 0:
kl = math.inf
break
q_hist = calc_histogram(angles_opt2)
kl += kldiv(p_hist[i], q_hist)
return kl, params
def optimize(cos_opt_dir, hist_smpl_fpath, bone_idx=None):
cos_opt = read_cos_opt(cos_opt_dir)
angles_opt = np.arccos(cos_opt) / (math.pi / 2)
cos_smpl = np.load(hist_smpl_fpath)
# cos_smpl = subsample(cos_smpl)
print(cos_smpl.shape)
cos_smpl = np.clip(cos_smpl, -1, 1)
mask = cos_smpl <= 1
assert np.all(mask), (~mask).mean()
mask = cos_smpl >= 0
assert np.all(mask), (~mask).mean()
angles_smpl = np.arccos(cos_smpl) / (math.pi / 2)
p_hist = [
calc_histogram(angles_smpl[:, i])
for i, _ in enumerate(pose_estimation.SKELETON)
]
with multiprocessing.Pool(8) as p:
results = list(
tqdm.tqdm(
p.imap_unordered(
functools.partial(step, angles_opt=angles_opt, p_hist=p_hist, bone_idx=bone_idx),
itertools.product(
np.linspace(0, 20, 100),
np.linspace(-20, 20, 200),
np.linspace(-20, 1, 100),
),
),
total=(100 * 200 * 100),
)
)
kls, params = zip(*results)
ind = np.argmin(kls)
best_params = params[ind]
print(kls[ind], best_params)
inds = np.argsort(kls)
for i in inds[:10]:
print(kls[i])
print(params[i])
print()
return best_params
def main():
cos_opt_dir = "paper_single2_150mse"
hist_smpl_fpath = "./data/hist_smpl.npy"
# hist_smpl_fpath = "./testtest.npy"
params = optimize(cos_opt_dir, hist_smpl_fpath)
# params = (1.2121212121212122, -1.105527638190953, 0.787878787878789)
# params = (0.20202020202020202, 0.30150753768844396, 0.3636363636363633)
print(params)
x = np.linspace(0, math.pi / 2, 100)
y = cub(x / (math.pi / 2), *params) * (math.pi / 2)
x = x * 180 / math.pi
y = y * 180 / math.pi
out_dir = Path("hists")
out_dir.mkdir(parents=True, exist_ok=True)
plot_hist(cos_opt_dir, hist_smpl_fpath, params, out_dir, xy=(x, y))
plt.figure(figsize=(4, 4), dpi=300)
plt.plot(x, y, linewidth=6)
plt.plot(x, x, linewidth=2, linestyle="dashed")
xticks = [0, 15, 30, 45, 60, 75, 90]
plt.xticks(xticks)
plt.yticks(xticks)
plt.axis("equal")
plt.tight_layout()
plt.savefig(out_dir / "new_out.png")
if __name__ == "__main__":
main()
|