Spaces:
Running
Running
File size: 4,175 Bytes
f43c9b7 aff3e71 f43c9b7 aff3e71 f43c9b7 aff3e71 b601d4d 9bb97f4 b601d4d 0acdc60 9bb97f4 b601d4d 9bb97f4 b601d4d 9bb97f4 0acdc60 b601d4d 9bb97f4 0acdc60 9bb97f4 aff3e71 9bb97f4 ac3c226 e4cfea2 ac3c226 aff3e71 f43c9b7 aff3e71 f43c9b7 c01aad0 f43c9b7 c01aad0 f43c9b7 c01aad0 f43c9b7 c01aad0 f43c9b7 c01aad0 f43c9b7 be3490d f43c9b7 483d460 f43c9b7 c6678f9 f43c9b7 c6678f9 2e55dd7 f43c9b7 c01aad0 c6678f9 c01aad0 f43c9b7 c01aad0 978dfc6 aff3e71 f43c9b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import shutil
import subprocess
import textwrap
from pathlib import Path
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
REPO_ID = "kbrodt/sketch2pose"
API_TOKEN = os.environ["sketch2pose"]
ASSET_DIR = Path("./assets")
SAVE_DIR = "output"
CMD = textwrap.dedent("""
python src/pose.py
--save-path {}
--img-path {}
""")
TITLE = "Sketch2Pose: Estimating a 3D Character Pose from a Bitmap Sketch"
DESCRIPTION = '''
<style>
figure {
margin: 0;
font-size: smaller;
text-align: justify;
}
img {
width: auto;
max-width: 100%;
height: auto;
}
video {
width: 720;
max-width: 100%;
height: 405;
}
ul.horizontal {
padding: 0;
}
ul.horizontal li {
padding: 0 1em 0 0;
display: inline-block;
}
table td {
vertical-align: top;
}
</style>
<table>
<tr>
<td>
<figure>
<img src="http://www-labs.iro.umontreal.ca/~bmpix/sketch2pose/teaser.png" alt="sketch2pose">
<figcaption>
Given a single natural <b>bitmap</b> sketch of a character (a), our
learning-based approach allows to automatically, with no additional input,
recover the 3D pose consistent with the viewer expectation (b). This pose can
be then automatically copied a custom rigged and skinned 3D character (c) using
standard retargeting tools (d). Input image © Olga Posukh.
</figcaption>
</figure>
<p>
<ul class="horizontal">
<li><a href="http://www-labs.iro.umontreal.ca/~bmpix/sketch2pose/">[project page]</a></li>
<li><a href="https://dl.acm.org/doi/10.1145/3528223.3530106">[paper acm siggraph 2022]</a></li>
<li><a href="https://github.com/kbrodt/sketch2pose">[code.git]</a></li>
</ul>
</p>
</td>
<td>
<video width="720" height="405" controls autoplay muted loop>
<source src="http://www-labs.iro.umontreal.ca/~bmpix/sketch2pose/sketch2pose.webm" type="video/mp4">
</video>
</td>
</tr>
<table>
<p>
Note: it takes about 30 seconds to infer 3D pose on Hugginface Spaces without
self-contacts and 2.5 minutes with self-contacts (uncheck it if the input character
sketch does not have self-contacts).
</p>
'''
def prepare():
filename = "models_smplx_v1_1.zip"
smpl_path = hf_hub_download(
repo_id=REPO_ID,
repo_type="model",
filename=filename,
use_auth_token=API_TOKEN,
cache_dir=ASSET_DIR,
)
if not (ASSET_DIR / filename).is_file():
shutil.copy(smpl_path, ASSET_DIR)
subprocess.run("bash ./scripts/download.sh".split())
subprocess.run("bash ./scripts/prepare.sh".split())
def main():
prepare()
save_dir = Path(SAVE_DIR)
save_dir.mkdir(parents=True, exist_ok=True)
def pose(img_path, use_cos=True, use_angle_transf=True, use_contacts=False, use_natural=True):
if use_cos == False:
use_angle_transf = False
cmd = CMD.format(save_dir, img_path)
if use_cos:
cmd = cmd + " --use-cos"
if use_angle_transf:
cmd = cmd + " --use-angle-transf"
if use_contacts:
cmd = cmd + " --use-contacts"
if use_natural:
cmd = cmd + " --use-natural"
out_dir = (save_dir / Path(img_path).name).with_suffix("")
mesh_path = out_dir / "us.glb"
if not mesh_path.is_file():
subprocess.call(cmd.split())
return str(mesh_path)
examples = []
use_contacts = torch.cuda.is_available()
for img_path in Path("./data/images").glob("*"):
examples.append([str(img_path), True, True, use_contacts, True])
demo = gr.Interface(
fn=pose,
inputs=[
gr.Image(type="filepath", label="Image"),
gr.Checkbox(value=True, label="Bone lenghts"),
gr.Checkbox(value=True, label="Foreshortening"),
gr.Checkbox(value=use_contacts, label="Self-contacts", interactive=use_contacts),
gr.Checkbox(value=True, label="Pose naturalness"),
],
outputs=gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="SMPL 3D pose"),
examples=examples[:5] + examples[6:6 + 4],
title=TITLE,
description=DESCRIPTION,
)
demo.launch()
if __name__ == "__main__":
main()
|