Spaces:
Running
Running
Update clothGen.py
Browse files- clothGen.py +125 -18
clothGen.py
CHANGED
@@ -3,6 +3,11 @@ import pandas as pd
|
|
3 |
from prompt_gen import prompt_gen
|
4 |
import requests
|
5 |
import os
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
nv_prompt_file = pd.read_excel('汉服-女词库.xlsx')
|
8 |
na_prompt_file = pd.read_excel('汉服-男词库.xlsx')
|
@@ -11,41 +16,51 @@ na_prompt = na_prompt_file.to_string(index=False)
|
|
11 |
save_directory = "downloads"
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def pro_gen(advice, gender, index):
|
15 |
prompt = prompt_gen(advice, gender)
|
16 |
start_index = prompt.find("Begin")
|
17 |
if start_index == -1:
|
18 |
start_index = prompt.find("begin")
|
19 |
-
intro_index = prompt.find("服饰风格介绍")
|
20 |
-
cloth_intro = ""
|
21 |
prompt__gen = ""
|
22 |
if start_index != -1:
|
23 |
start_index += len("Begin\n")
|
24 |
end_index = prompt.find("End")
|
25 |
if end_index != -1:
|
26 |
prompt__gen = prompt[start_index:end_index]
|
|
|
|
|
27 |
filename = os.path.join(save_directory, f"prompt_{index}.txt")
|
28 |
with open(filename, "w") as file:
|
29 |
file.write(prompt__gen)
|
30 |
-
print(prompt__gen)
|
31 |
else:
|
32 |
print("No 'promptEnd' found after 'prompt'.")
|
33 |
else:
|
34 |
print("No 'prompt' found in the text.")
|
35 |
-
if intro_index != -1:
|
36 |
-
intro_index += len("服饰风格介绍\n")
|
37 |
-
cloth_intro = ("汉服,是汉民族的传统服饰。又称衣冠、衣裳、汉装。汉服是中国“衣冠上国”“礼仪之邦”“锦绣中华”的体现,承载了中国的染织绣等杰出"
|
38 |
-
"工艺和美学,传承了30多项中国非物质文化遗产以及受保护的中国工艺美术。\n") + prompt[intro_index:]
|
39 |
-
filename = os.path.join(save_directory, f"cloth_intro_{index}.txt")
|
40 |
-
with open(filename, "w") as file:
|
41 |
-
file.write(cloth_intro)
|
42 |
-
print(cloth_intro)
|
43 |
-
else:
|
44 |
-
print("No '服饰风格介绍' found.")
|
45 |
return prompt__gen
|
46 |
|
47 |
|
48 |
def generate(lora_path, prompt__gen, index):
|
|
|
49 |
handler = fal_client.submit(
|
50 |
"fal-ai/fast-sdxl",
|
51 |
arguments={
|
@@ -56,7 +71,7 @@ def generate(lora_path, prompt__gen, index):
|
|
56 |
"image_size": "portrait_4_3",
|
57 |
"num_inference_steps": 28,
|
58 |
"guidance_scale": 7.5,
|
59 |
-
"num_images":
|
60 |
"loras": [{"path": lora_path, "scale": 0.7}],
|
61 |
"embeddings": [],
|
62 |
"safety_checker_version": "v1",
|
@@ -70,28 +85,120 @@ def generate(lora_path, prompt__gen, index):
|
|
70 |
for image in result['images']:
|
71 |
response = requests.get(image['url'])
|
72 |
if response.status_code == 200:
|
73 |
-
filename = os.path.join(save_directory, f"
|
74 |
with open(filename, 'wb') as f:
|
75 |
f.write(response.content)
|
76 |
image_index += 1
|
77 |
else:
|
78 |
print(f"Failed to download image from {image['url']}")
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
def cloth_gen(gender):
|
|
|
82 |
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors"
|
|
|
|
|
83 |
if gender == "男":
|
84 |
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NA.safetensors"
|
85 |
-
|
|
|
|
|
|
|
86 |
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors"
|
|
|
|
|
|
|
87 |
|
88 |
cloth_image = []
|
89 |
for i in range(1, 4):
|
90 |
with open(os.path.join(save_directory, f"prompt_{i}.txt"), "r") as file:
|
91 |
prompt__gen = file.read()
|
92 |
generate(lora_path, prompt__gen, i)
|
93 |
-
cloth_image.append(os.path.join(save_directory, f"
|
94 |
-
|
|
|
|
|
95 |
with open(os.path.join(save_directory, f"cloth_intro_1.txt"), "r") as file:
|
96 |
cloth_intro = file.read()
|
97 |
return cloth_image, cloth_image[0], cloth_intro
|
|
|
3 |
from prompt_gen import prompt_gen
|
4 |
import requests
|
5 |
import os
|
6 |
+
from openai import OpenAI
|
7 |
+
import random
|
8 |
+
import shutil
|
9 |
+
from pathlib import Path
|
10 |
+
from PIL import Image
|
11 |
|
12 |
nv_prompt_file = pd.read_excel('汉服-女词库.xlsx')
|
13 |
na_prompt_file = pd.read_excel('汉服-男词库.xlsx')
|
|
|
16 |
save_directory = "downloads"
|
17 |
|
18 |
|
19 |
+
def prompt_nan(prompt):
|
20 |
+
client = OpenAI()
|
21 |
+
completion = client.chat.completions.create(
|
22 |
+
model="gpt-4o",
|
23 |
+
messages=[
|
24 |
+
{"role": "system",
|
25 |
+
"content": "You are a helpful assistant.", },
|
26 |
+
{"role": "user",
|
27 |
+
"content": "Please showcase the overall appearance of this Hanfu robe against a contrasting white "
|
28 |
+
"background. Highlight its intricate details and unique design elements, including" + prompt,
|
29 |
+
}
|
30 |
+
]
|
31 |
+
|
32 |
+
)
|
33 |
+
print("change prompt: ")
|
34 |
+
print(completion.choices[0].message.content)
|
35 |
+
return completion.choices[0].message.content
|
36 |
+
|
37 |
+
|
38 |
def pro_gen(advice, gender, index):
|
39 |
prompt = prompt_gen(advice, gender)
|
40 |
start_index = prompt.find("Begin")
|
41 |
if start_index == -1:
|
42 |
start_index = prompt.find("begin")
|
|
|
|
|
43 |
prompt__gen = ""
|
44 |
if start_index != -1:
|
45 |
start_index += len("Begin\n")
|
46 |
end_index = prompt.find("End")
|
47 |
if end_index != -1:
|
48 |
prompt__gen = prompt[start_index:end_index]
|
49 |
+
# if gender == "男":
|
50 |
+
# prompt__gen = prompt_nan(prompt__gen)
|
51 |
filename = os.path.join(save_directory, f"prompt_{index}.txt")
|
52 |
with open(filename, "w") as file:
|
53 |
file.write(prompt__gen)
|
54 |
+
# print(prompt__gen)
|
55 |
else:
|
56 |
print("No 'promptEnd' found after 'prompt'.")
|
57 |
else:
|
58 |
print("No 'prompt' found in the text.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return prompt__gen
|
60 |
|
61 |
|
62 |
def generate(lora_path, prompt__gen, index):
|
63 |
+
# print(prompt__gen)
|
64 |
handler = fal_client.submit(
|
65 |
"fal-ai/fast-sdxl",
|
66 |
arguments={
|
|
|
71 |
"image_size": "portrait_4_3",
|
72 |
"num_inference_steps": 28,
|
73 |
"guidance_scale": 7.5,
|
74 |
+
"num_images": 1,
|
75 |
"loras": [{"path": lora_path, "scale": 0.7}],
|
76 |
"embeddings": [],
|
77 |
"safety_checker_version": "v1",
|
|
|
85 |
for image in result['images']:
|
86 |
response = requests.get(image['url'])
|
87 |
if response.status_code == 200:
|
88 |
+
filename = os.path.join(save_directory, f"cloth_{image_index}.jpeg")
|
89 |
with open(filename, 'wb') as f:
|
90 |
f.write(response.content)
|
91 |
image_index += 1
|
92 |
else:
|
93 |
print(f"Failed to download image from {image['url']}")
|
94 |
|
95 |
+
client = OpenAI()
|
96 |
+
completion = client.chat.completions.create(
|
97 |
+
model="gpt-4o",
|
98 |
+
messages=[
|
99 |
+
{"role": "system",
|
100 |
+
"content": "You are a helpful assistant.", },
|
101 |
+
{"role": "user",
|
102 |
+
"content": prompt__gen + "以上是一段对于一套汉服的描述,请根据描述内容对该套汉服进行介绍。要求以介绍的口吻输出内容",
|
103 |
+
}
|
104 |
+
]
|
105 |
+
|
106 |
+
)
|
107 |
+
cloth_intro = ("汉服,是汉民族的传统服饰。又称衣冠、衣裳、汉装。汉服是中国“衣冠上国”“礼仪之邦”“锦绣中华”的体现,承载了中国的染织绣等杰出"
|
108 |
+
"工艺和美学,传承了30多项中国非物质文化遗产以及受保护的中国工艺美术。\n") + completion.choices[
|
109 |
+
0].message.content
|
110 |
+
filename = os.path.join(save_directory, f"cloth_intro_{index * 2 - 1}.txt")
|
111 |
+
with open(filename, "w") as file:
|
112 |
+
file.write(cloth_intro)
|
113 |
+
|
114 |
+
|
115 |
+
def convert_image_to_jpeg(input_path, output_path):
|
116 |
+
try:
|
117 |
+
image = Image.open(input_path)
|
118 |
+
if image.mode in ('RGBA', 'LA'):
|
119 |
+
image = image.convert('RGB')
|
120 |
+
image.save(output_path, 'JPEG')
|
121 |
+
except Exception as e:
|
122 |
+
print(f"转换图像时出错: {e}")
|
123 |
+
|
124 |
+
|
125 |
+
def pic_match(prompt__gen, cates, folder_path, intro_path, index):
|
126 |
+
client = OpenAI()
|
127 |
+
completion = client.chat.completions.create(
|
128 |
+
model="gpt-4o",
|
129 |
+
messages=[
|
130 |
+
{"role": "system",
|
131 |
+
"content": "You are a helpful assistant.", },
|
132 |
+
{"role": "user",
|
133 |
+
"content": prompt__gen + "以上是关于一套汉族服饰的描述,请根据描述内容从以下几种颜色中选择最符合描述的一种,可选颜色包括:" + cates
|
134 |
+
+ ". 仅需输出一种颜色名称,不要带任何符号",
|
135 |
+
}
|
136 |
+
]
|
137 |
+
|
138 |
+
)
|
139 |
+
print(f"Selected color: {completion.choices[0].message.content}")
|
140 |
+
|
141 |
+
folder_path = os.path.join(folder_path, completion.choices[0].message.content)
|
142 |
+
files = os.listdir(folder_path)
|
143 |
+
random_file = random.choice(files)
|
144 |
+
source_file_path = os.path.join(folder_path, random_file)
|
145 |
+
file_prefix, file_ext = os.path.splitext(random_file)
|
146 |
+
target_file_path = os.path.join(save_directory, f"cloth_{index * 2}.jpeg")
|
147 |
+
convert_image_to_jpeg(source_file_path, target_file_path)
|
148 |
+
|
149 |
+
file_extension = ".txt"
|
150 |
+
search_path = Path(intro_path)
|
151 |
+
for file in search_path.glob(f"{file_prefix}*{file_extension}"):
|
152 |
+
if file.is_file():
|
153 |
+
with open(file, "r") as f:
|
154 |
+
content = f.read()
|
155 |
+
client = OpenAI()
|
156 |
+
completion = client.chat.completions.create(
|
157 |
+
model="gpt-4o",
|
158 |
+
messages=[
|
159 |
+
{"role": "system",
|
160 |
+
"content": "You are a helpful assistant.", },
|
161 |
+
{"role": "user",
|
162 |
+
"content": content + "以上是一段对于一套汉服的描述,请根据描述内容对该套汉服进行介绍。要求以介绍的口吻输出内容",
|
163 |
+
}
|
164 |
+
]
|
165 |
+
|
166 |
+
)
|
167 |
+
cloth_intro = ("汉服,是汉民族的传统服饰。又称衣冠、衣裳、汉装。汉服是中国“衣冠上国”“礼仪之邦”“锦绣中华”的体现,承载了中国的染织绣等杰出"
|
168 |
+
"工艺和美学,传承了30多项中国非物质文化遗产以及受保护的中国工艺美术。\n") + \
|
169 |
+
completion.choices[0].message.content
|
170 |
+
filename = os.path.join(save_directory, f"cloth_intro_{index * 2}.txt")
|
171 |
+
with open(filename, "w") as file:
|
172 |
+
file.write(cloth_intro)
|
173 |
+
|
174 |
+
return target_file_path
|
175 |
+
|
176 |
|
177 |
def cloth_gen(gender):
|
178 |
+
cates = "Black, Blue, Green, Orange, Pink, Red, Violet, White, Yellow"
|
179 |
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors"
|
180 |
+
folder_path = "database/female"
|
181 |
+
intro_path = "database/female_intro"
|
182 |
if gender == "男":
|
183 |
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NA.safetensors"
|
184 |
+
cates = "Black, Blue, Green, Brown, Red, Violet"
|
185 |
+
folder_path = "database/male"
|
186 |
+
intro_path = "database/male_intro"
|
187 |
+
elif gender == "女":
|
188 |
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors"
|
189 |
+
cates = "Black, Blue, Green, Orange, Pink, Red, Violet, White, Yellow"
|
190 |
+
folder_path = "database/female"
|
191 |
+
intro_path = "database/female_intro"
|
192 |
|
193 |
cloth_image = []
|
194 |
for i in range(1, 4):
|
195 |
with open(os.path.join(save_directory, f"prompt_{i}.txt"), "r") as file:
|
196 |
prompt__gen = file.read()
|
197 |
generate(lora_path, prompt__gen, i)
|
198 |
+
cloth_image.append(os.path.join(save_directory, f"cloth_{i*2-1}.jpeg"))
|
199 |
+
pic_path = pic_match(prompt__gen, cates, folder_path, intro_path, i)
|
200 |
+
cloth_image.append(pic_path)
|
201 |
+
|
202 |
with open(os.path.join(save_directory, f"cloth_intro_1.txt"), "r") as file:
|
203 |
cloth_intro = file.read()
|
204 |
return cloth_image, cloth_image[0], cloth_intro
|