import fal_client import pandas as pd from prompt_gen import prompt_gen import requests import os nv_prompt_file = pd.read_excel('汉服-女词库.xlsx') na_prompt_file = pd.read_excel('汉服-男词库.xlsx') nv_prompt = nv_prompt_file.to_string(index=False) na_prompt = na_prompt_file.to_string(index=False) def cloth_gen(advice, gender): lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors" if gender == "男": lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NA.safetensors" else: lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors" prompt = prompt_gen(advice, gender) prompt_start = prompt.find("Prompt") if prompt_start != -1: prompt = prompt[prompt_start + len("Prompt"):].strip() else: print("No prompt found.") handler = fal_client.submit( "fal-ai/fast-sdxl", arguments={ "prompt": prompt, "negative_prompt": "face, male, female, people, person, man, woman, Multiple clothes, cartoon, illustration, animation.", "image_size": "portrait_4_3", "num_inference_steps": 28, "guidance_scale": 7.5, "num_images": 6, "loras": [{"path": lora_path, "scale": 0.7}], "embeddings": [], "safety_checker_version": "v1", "format": "jpeg" }, ) request_id = handler.request_id result = fal_client.result("fal-ai/fast-sdxl", request_id) cloth_image = [] save_directory = "downloads" image_index = 1 for image in result['images']: response = requests.get(image['url']) if response.status_code == 200: filename = os.path.join(save_directory, f"gen_cloth_{image_index}.jpeg") cloth_image.append(filename) with open(filename, 'wb') as f: f.write(response.content) image_index += 1 else: print(f"Failed to download image from {image['url']}") return cloth_image # cloth_gen()