Spaces:
Sleeping
Sleeping
import fal_client | |
import pandas as pd | |
from prompt_gen import prompt_gen | |
import requests | |
import os | |
nv_prompt_file = pd.read_excel('汉服-女词库.xlsx') | |
na_prompt_file = pd.read_excel('汉服-男词库.xlsx') | |
nv_prompt = nv_prompt_file.to_string(index=False) | |
na_prompt = na_prompt_file.to_string(index=False) | |
def cloth_gen(advice, gender): | |
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors" | |
if gender == "男": | |
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NA.safetensors" | |
elif gender == "女": | |
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors" | |
prompt = prompt_gen(advice, gender) | |
start_index = prompt.find("Begin") | |
if start_index == -1: | |
start_index = prompt.find("begin") | |
intro_index = prompt.find("服饰风格介绍") | |
cloth_intro = "" | |
promptGen = "" | |
if start_index != -1: | |
start_index += len("Begin\n") | |
end_index = prompt.find("End" or "end") | |
if end_index != -1: | |
extracted_content = prompt[start_index:end_index] | |
promptGen = extracted_content | |
print(extracted_content) | |
else: | |
print("No 'End' found after 'Begin'.") | |
else: | |
print("No 'Begin' found in the text.") | |
if intro_index != -1: | |
intro_index += len("服饰风格介绍\n") | |
cloth_intro = ("汉服,是汉民族的传统服饰。又称衣冠、衣裳、汉装。汉服是中国“衣冠上国”“礼仪之邦”“锦绣中华”的体现,承载了中国的染织绣等杰出" | |
"工艺和美学,传承了30多项中国非物质文化遗产以及受保护的中国工艺美术。\n") + prompt[intro_index:] | |
print(cloth_intro) | |
else: | |
print("No '服饰风格介绍' found.") | |
handler = fal_client.submit( | |
"fal-ai/fast-sdxl", | |
arguments={ | |
"prompt": promptGen, | |
"negative_prompt": "face, head, human, people, person, man, woman, child, model, eyes, hands, arms, legs, " | |
"feet, hair, portrait, worst quality, low quality, normal quality, lowres, signature, " | |
"watermark, jpeg artifacts, logo, monochrome, grayscale, ugly", | |
"image_size": "portrait_4_3", | |
"num_inference_steps": 28, | |
"guidance_scale": 7.5, | |
"num_images": 6, | |
"loras": [{"path": lora_path, "scale": 0.7}], | |
"embeddings": [], | |
"safety_checker_version": "v1", | |
"format": "jpeg" | |
}, | |
) | |
request_id = handler.request_id | |
result = fal_client.result("fal-ai/fast-sdxl", request_id) | |
cloth_image = [] | |
save_directory = "downloads" | |
image_index = 1 | |
for image in result['images']: | |
response = requests.get(image['url']) | |
if response.status_code == 200: | |
filename = os.path.join(save_directory, f"gen_cloth_{image_index}.jpeg") | |
cloth_image.append(filename) | |
with open(filename, 'wb') as f: | |
f.write(response.content) | |
image_index += 1 | |
else: | |
print(f"Failed to download image from {image['url']}") | |
return cloth_image, cloth_image[0], cloth_intro | |