GED / genn_astar.py
ubuntu
try fix bugs
fc0a115
import os
import numpy as np
import networkx as nx
import pygmtools as pygm
import torch
try:
from torch_geometric.data import Data
except:
os.system("pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
os.system("pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
os.system("pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
os.system("pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
from torch_geometric.data import Data
from one_hot import one_hot
from torch_geometric.transforms import OneHotDegree
import matplotlib.pyplot as plt
import pygmtools as pygm
pygm.set_backend('pytorch')
######################################################
# Constant Variable #
######################################################
AIDS700NEF_TYPE = [
'O', 'S', 'C', 'N', 'Cl', 'Br', 'B', 'Si', 'Hg', 'I', 'Bi', 'P', 'F',
'Cu', 'Ho', 'Pd', 'Ru', 'Pt', 'Sn', 'Li', 'Ga', 'Tb', 'As', 'Co', 'Pb',
'Sb', 'Se', 'Ni', 'Te'
]
COLOR = [
'#FF69B4', # O - 热情的粉红色
'#00CED1', # S - 深蓝绿色
'#FFD700', # C - 金色
'#FFA500', # N - 橙色
'#FF6347', # Cl - 番茄红色
'#8B008B', # Br - 深洋红色
'#00FF7F', # B - 春天的绿色
'#40E0D0', # Si - 绿松石色
'#FF4500', # Hg - 橙红色
'#9932CC', # I - 深兰花紫色
'#9370DB', # Bi - 中紫色
'#FFA500', # P - 橙色
'#FFFF00', # F - 黄色
'#B8860B', # Cu - 深金色
'#7FFFD4', # Ho - 碧绿色
'#FFD700', # Pd - 金色
'#B22222', # Ru - 砖红色
'#E5E4E2', # Pt - 浅灰色
'#A9A9A9', # Sn - 深灰色
'#32CD32', # Li - 酸橙色
'#CD853F', # Ga - 秘鲁色
'#7FFFD4', # Tb - 碧绿色
'#8A2BE2', # As - 紫罗兰色
'#FFD700', # Co - 金色
'#808080', # Pb - 灰色
'#A9A9A9', # Sb - 深灰色
'#FA8072', # Se - 鲑鱼色
'#BEBEBE', # Ni - 浅灰色
'#800080' # Te - 紫色
]
######################################################
# Utils Func #
######################################################
def from_gexf(filename: str, node_types: list=None):
r"""
Read Data from GEXF file
"""
if not filename.endswith('.gexf'):
raise ValueError("File type error, 'from_gexf' function only supports GEXF files")
graph = nx.read_gexf(filename)
mapping = {name: j for j, name in enumerate(graph.nodes())}
graph = nx.relabel_nodes(graph, mapping)
edge_index = torch.from_numpy(np.array(graph.edges, dtype=np.int64).transpose())
x = None
labels = None
data = None
colors = None
if 'type' in graph.nodes(data=True)[0].keys():
labels = dict()
colors = list()
num_nodes = graph.number_of_nodes()
x = torch.zeros(num_nodes, dtype=torch.long)
node_types = AIDS700NEF_TYPE if node_types is None else node_types
for node, info in graph.nodes(data=True):
x[int(node)] = node_types.index(info['type'])
labels[int(node)] = str(int(node)) + info['type']
colors.append(COLOR[x[int(node)]])
x = one_hot(x, num_classes=len(node_types))
data = Data(x=x, edge_index=edge_index, edge_attr=None)
return graph, data, labels, colors
def draw(graph, colors, labels, filename, title, pos_type=None):
if pos_type is None:
pos = nx.kamada_kawai_layout(graph)
elif pos_type == "spring":
pos = nx.spring_layout(graph)
plt.figure()
plt.gca().set_title(title)
nx.draw(graph, pos, with_labels=True, node_color=colors, edge_color='gray', labels=labels)
plt.savefig(filename)
plt.clf()
######################################################
# GED UI #
######################################################
def astar(
g1_path: str,
g2_path: str,
output_path: str="examples",
filename: str="example",
device='cpu'
):
if not os.path.exists(output_path):
os.mkdir(output_path)
output_filename = os.path.join(output_path, filename) + "_{}.png"
# Load data
g1, d1, l1, c1 = from_gexf(g1_path)
g2, d2, l2, c2 = from_gexf(g2_path)
if len(c1) > len(c2):
graph1, data1, labels1, colors1 = g2, d2, l2, c2
graph2, data2, labels2, colors2 = g1, d1, l1, c1
else:
graph1, data1, labels1, colors1 = g1, d1, l1, c1
graph2, data2, labels2, colors2 = g2, d2, l2, c2
# Build Graph and Adj Matrix
data1 = OneHotDegree(max_degree=6)(data1)
data2 = OneHotDegree(max_degree=6)(data2)
feat1 = data1.x.to(device)
feat2 = data2.x.to(device)
A1 = torch.tensor(pygm.utils.from_networkx(graph1)).float().to(device)
A2 = torch.tensor(pygm.utils.from_networkx(graph2)).float().to(device)
import site
site_path = site.getsitepackages()[0]
pygm_path = os.path.join(site_path, "pygmtools")
print(os.listdir(pygm_path))
# Caculate the ged
x_pred = pygm.genn_astar(feat1, feat2, A1, A2, return_network=False)
# Plot
draw(graph1, colors1, labels1, output_filename.format(1), "Graph1")
draw(graph2, colors2, labels2, output_filename.format(5), f"Graph2")
# Match Process
total_cost = 0
labels1_1 = labels1.copy()
for i in range(x_pred.shape[0]):
target = torch.nonzero(x_pred[i])[0].item()
labels1_1[i] = labels1[i].replace(str(i), str(target))
title = "Node Match"
draw(graph1, colors1, labels1_1, output_filename.format(2), title)
# Node Change
cur_cost = 0
labels1_2 = labels1.copy()
colors1_2 = colors1.copy()
target2ori = dict()
targets = list()
for i in range(x_pred.shape[0]):
target = torch.nonzero(x_pred[i])[0].item()
if labels1_1[i] != labels2[target]:
cur_cost += 1
labels1_2[i] = labels2[target]
colors1_2[i] = colors2[target]
target2ori[target] = i
targets.append(target)
total_cost += cur_cost
title = f"Node Change"
draw(graph1, colors1_2, labels1_2, output_filename.format(3), title)
# Edge Change
leave_cost = np.array(graph2).shape[0] - np.array(graph1).shape[0]
leave_cost += graph2.number_of_nodes() - graph1.number_of_nodes()
e2 = np.array(graph2.edges)
new_edges = list()
for edge in e2:
if edge[0] in targets and edge[1] in targets:
new_edges.append([target2ori[edge[0]], target2ori[edge[1]]])
graph1.edges = nx.Graph(new_edges).edges
title = f"Edge Change"
draw(graph1, colors1_2, labels1_2, output_filename.format(4), title, pos_type="spring")