SR05's picture
Update lit.py
2cfc57f verified
raw
history blame
6.21 kB
import requests
import pandas as pd
from io import BytesIO
from bs4 import BeautifulSoup
import streamlit as st
# Streamlit app title
st.title("Visa Application Status Checker")
# URL of the website to scrape
url = "https://www.ireland.ie/en/india/newdelhi/services/visas/processing-times-and-decisions/"
# Headers to mimic a browser request
headers = {
"User-Agent": (
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
"(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
)
}
# Step 1: Function to fetch and cache the .ods file
@st.cache_data(ttl=3600, max_entries=1)
def fetch_ods_file():
response = requests.get(url, headers=headers)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
# Find all anchor tags
links = soup.find_all('a')
# Search for the link containing the specific text
file_url = None
for link in links:
link_text = link.get_text(strip=True)
if "Visa decisions made from 1 January 2024 to" in link_text:
file_url = link.get('href')
file_name = link_text
break
if file_url:
# Make the link absolute if it is relative
if not file_url.startswith('http'):
file_url = requests.compat.urljoin(url, file_url)
file_response = requests.get(file_url, headers=headers)
if file_response.status_code == 200:
return BytesIO(file_response.content), file_name
else:
st.error(f"Failed to download the file. Status code: {file_response.status_code}")
else:
st.error("The specified link was not found.")
else:
st.error(f"Failed to retrieve the webpage. Status code: {response.status_code}")
return None, None
# Step 2: Fetch the cached .ods file
ods_file, cached_file_name = fetch_ods_file()
if ods_file:
try:
# Step 3: Read the .ods file into a DataFrame
df = pd.read_excel(ods_file, engine='odf')
# Clean up the DataFrame by dropping unnecessary columns
df.drop(columns=["Unnamed: 0", "Unnamed: 1"], inplace=True, errors='ignore')
# Drop empty rows and reset index
df.dropna(how='all', inplace=True)
df.reset_index(drop=True, inplace=True)
# Identify the header row and reformat DataFrame
for idx, row in df.iterrows():
if row['Unnamed: 2'] == 'Application Number' and row['Unnamed: 3'] == 'Decision':
df.columns = ['Application Number', 'Decision']
df = df.iloc[idx + 1:] # Skip the header row
break
# Reset index after cleaning
df.reset_index(drop=True, inplace=True)
# Convert "Application Number" to string for consistency
df['Application Number'] = df['Application Number'].astype(str)
# Step 4: Get user input for application number using Streamlit
user_application_number = st.text_input("Enter your Application Number")
# Step 5: Check if the application number exists in the DataFrame
if user_application_number:
result = df[df['Application Number'] == user_application_number]
if not result.empty:
decision = result.iloc[0]['Decision']
if decision.lower() == 'approved':
st.success(f"Congratulations! Your visa application ({user_application_number}) has been Approved.")
elif decision.lower() == 'rejected':
st.error(f"Sorry, your visa application ({user_application_number}) has been Rejected.")
else:
st.warning(f"Your visa application ({user_application_number}) has a status of '{decision}'.")
else:
st.warning(f"No record found for Application Number: {user_application_number}.")
# Convert Application Numbers to integers for comparison
df['Application Number'] = df['Application Number'].astype(int)
try:
user_application_number_int = int(user_application_number)
# Step 6: Find the nearest pre and post application numbers
df_sorted = df.sort_values(by='Application Number')
pre_number = df_sorted[df_sorted['Application Number'] < user_application_number_int].tail(1)
post_number = df_sorted[df_sorted['Application Number'] > user_application_number_int].head(1)
# Prepare the results
pre_diff = user_application_number_int - pre_number['Application Number'].values[0] if not pre_number.empty else None
post_diff = post_number['Application Number'].values[0] - user_application_number_int if not post_number.empty else None
result_table = pd.DataFrame({
"Nearest Application": ['Before', 'After'],
"Application Number": [pre_number['Application Number'].values[0] if not pre_number.empty else None,
post_number['Application Number'].values[0] if not post_number.empty else None],
"Decision": [pre_number['Decision'].values[0] if not pre_number.empty else None,
post_number['Decision'].values[0] if not post_number.empty else None],
"Difference": [pre_diff, post_diff]
})
# Step 7: Display the nearest application numbers in tabular form
st.subheader("Nearest Application Numbers")
st.table(result_table)
except ValueError:
st.error("Invalid Application Number format. Please enter a numeric value.")
except Exception as e:
st.error(f"Error reading the .ods file: {e}")
else:
st.error("No file data available.")