SR05 commited on
Commit
89d3cb7
1 Parent(s): 2c5ac56

Create lit.py

Browse files
Files changed (1) hide show
  1. lit.py +98 -0
lit.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import pandas as pd
3
+ from io import BytesIO
4
+ from bs4 import BeautifulSoup
5
+ import streamlit as st
6
+
7
+ # Streamlit app title
8
+ st.title("Visa Application Status Checker")
9
+
10
+ # URL of the website to scrape
11
+ url = "https://www.ireland.ie/en/india/newdelhi/services/visas/processing-times-and-decisions/"
12
+
13
+ # Headers to mimic a browser request
14
+ headers = {
15
+ "User-Agent": (
16
+ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
17
+ "(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
18
+ )
19
+ }
20
+
21
+ # Step 1: Scrape the website to find the .ods file link
22
+ response = requests.get(url, headers=headers)
23
+ if response.status_code == 200:
24
+ soup = BeautifulSoup(response.content, 'html.parser')
25
+
26
+ # Find all anchor tags
27
+ links = soup.find_all('a')
28
+
29
+ # Search for the link containing the specific text
30
+ file_url = None
31
+ for link in links:
32
+ link_text = link.get_text(strip=True)
33
+ if "Visa decisions made from 1 January 2024 to" in link_text:
34
+ file_url = link.get('href')
35
+ break
36
+
37
+ # If the link was found, proceed to download the file
38
+ if file_url:
39
+ # Make the link absolute if it is relative
40
+ if not file_url.startswith('http'):
41
+ file_url = requests.compat.urljoin(url, file_url)
42
+
43
+ st.write(f"Found visa decision file: [Download Link]({file_url})")
44
+
45
+ # Step 2: Download the .ods file
46
+ file_response = requests.get(file_url, headers=headers)
47
+
48
+ if file_response.status_code == 200:
49
+ ods_file = BytesIO(file_response.content)
50
+
51
+ try:
52
+ # Step 3: Read the .ods file into a DataFrame
53
+ df = pd.read_excel(ods_file, engine='odf')
54
+
55
+ # Clean up the DataFrame by dropping unnecessary columns
56
+ df.drop(columns=["Unnamed: 0", "Unnamed: 1"], inplace=True, errors='ignore')
57
+
58
+ # Drop empty rows and reset index
59
+ df.dropna(how='all', inplace=True)
60
+ df.reset_index(drop=True, inplace=True)
61
+
62
+ # Identify the header row and reformat DataFrame
63
+ for idx, row in df.iterrows():
64
+ if row['Unnamed: 2'] == 'Application Number' and row['Unnamed: 3'] == 'Decision':
65
+ df.columns = ['Application Number', 'Decision']
66
+ df = df.iloc[idx + 1:] # Skip the header row
67
+ break
68
+
69
+ # Reset index after cleaning
70
+ df.reset_index(drop=True, inplace=True)
71
+
72
+ # Convert "Application Number" to string for consistency
73
+ df['Application Number'] = df['Application Number'].astype(str)
74
+
75
+ # Display the DataFrame in Streamlit
76
+ st.subheader("Visa Application Decisions")
77
+ st.dataframe(df)
78
+
79
+ # Step 4: Get user input for application number using Streamlit
80
+ user_application_number = st.text_input("Enter your Application Number")
81
+
82
+ # Step 5: Check if the application number exists in the DataFrame
83
+ if user_application_number:
84
+ result = df[df['Application Number'] == user_application_number]
85
+
86
+ if not result.empty:
87
+ st.success(f"Congratulations! Your visa application ({user_application_number}) has been {result.iloc[0]['Decision']}.")
88
+ else:
89
+ st.error(f"No record found for Application Number: {user_application_number}.")
90
+
91
+ except Exception as e:
92
+ st.error(f"Error reading the .ods file: {e}")
93
+ else:
94
+ st.error(f"Failed to download the file. Status code: {file_response.status_code}")
95
+ else:
96
+ st.error("The specified link was not found.")
97
+ else:
98
+ st.error(f"Failed to retrieve the webpage. Status code: {response.status_code}")