Create project_file.py
Browse files- project_file.py +192 -0
project_file.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import bisect
|
4 |
+
import requests
|
5 |
+
from io import BytesIO
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
|
8 |
+
# ------------------------------------------------------------------------------------
|
9 |
+
# Step 1: Load Data (Fetch and Prepare the DataFrame)
|
10 |
+
# ------------------------------------------------------------------------------------
|
11 |
+
|
12 |
+
@st.cache_data(ttl=3600)
|
13 |
+
def fetch_ods_file():
|
14 |
+
"""
|
15 |
+
Fetches the .ods file from the visa decisions website and returns its binary content.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
- A BytesIO object containing the file content if successful.
|
19 |
+
- None if the file could not be fetched.
|
20 |
+
"""
|
21 |
+
url = "https://www.ireland.ie/en/india/newdelhi/services/visas/processing-times-and-decisions/"
|
22 |
+
headers = {
|
23 |
+
"User-Agent": (
|
24 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
|
25 |
+
"(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
|
26 |
+
)
|
27 |
+
}
|
28 |
+
|
29 |
+
response = requests.get(url, headers=headers)
|
30 |
+
if response.status_code == 200:
|
31 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
32 |
+
links = soup.find_all('a')
|
33 |
+
|
34 |
+
# Find the link containing the specific text
|
35 |
+
file_url = None
|
36 |
+
for link in links:
|
37 |
+
if "Visa decisions made from 1 January 2024 to" in link.get_text(strip=True):
|
38 |
+
file_url = link.get('href')
|
39 |
+
break
|
40 |
+
|
41 |
+
if file_url:
|
42 |
+
# Resolve relative URLs to absolute
|
43 |
+
if not file_url.startswith("http"):
|
44 |
+
file_url = requests.compat.urljoin(url, file_url)
|
45 |
+
|
46 |
+
file_response = requests.get(file_url, headers=headers)
|
47 |
+
if file_response.status_code == 200:
|
48 |
+
return BytesIO(file_response.content)
|
49 |
+
return None
|
50 |
+
|
51 |
+
@st.cache_data
|
52 |
+
def prepare_dataframe(file):
|
53 |
+
"""
|
54 |
+
Prepares and cleans the DataFrame from the fetched .ods file.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
file: The .ods file content as BytesIO.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
A cleaned and sorted DataFrame ready for searching.
|
61 |
+
"""
|
62 |
+
df = pd.read_excel(file, engine='odf')
|
63 |
+
df.drop(columns=["Unnamed: 0", "Unnamed: 1"], inplace=True, errors="ignore")
|
64 |
+
df.dropna(how="all", inplace=True)
|
65 |
+
df.reset_index(drop=True, inplace=True)
|
66 |
+
|
67 |
+
# Identify the header row
|
68 |
+
for idx, row in df.iterrows():
|
69 |
+
if row["Unnamed: 2"] == "Application Number" and row["Unnamed: 3"] == "Decision":
|
70 |
+
df.columns = ["Application Number", "Decision"]
|
71 |
+
df = df.iloc[idx + 1:] # Skip the header row
|
72 |
+
break
|
73 |
+
|
74 |
+
# Process application numbers and sort the DataFrame
|
75 |
+
df["Application Number"] = df["Application Number"].astype(str).str.strip().astype(int)
|
76 |
+
df.sort_values(by="Application Number", inplace=True)
|
77 |
+
df.reset_index(drop=True, inplace=True)
|
78 |
+
|
79 |
+
return df
|
80 |
+
|
81 |
+
# ------------------------------------------------------------------------------------
|
82 |
+
# Step 2: Binary Search Utility for Finding Nearest Application Numbers
|
83 |
+
# ------------------------------------------------------------------------------------
|
84 |
+
|
85 |
+
def binary_search_nearest(df, target):
|
86 |
+
"""
|
87 |
+
Uses binary search to find the nearest application numbers in the DataFrame.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
df: The DataFrame containing the application numbers.
|
91 |
+
target: The target application number to search for.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
Two nearest application numbers (before and after the target).
|
95 |
+
"""
|
96 |
+
application_numbers = df["Application Number"].tolist()
|
97 |
+
pos = bisect.bisect_left(application_numbers, target)
|
98 |
+
|
99 |
+
before = application_numbers[pos - 1] if pos > 0 else None
|
100 |
+
after = application_numbers[pos] if pos < len(application_numbers) else None
|
101 |
+
|
102 |
+
return before, after
|
103 |
+
|
104 |
+
# ------------------------------------------------------------------------------------
|
105 |
+
# Step 3: Search Application Status
|
106 |
+
# ------------------------------------------------------------------------------------
|
107 |
+
|
108 |
+
def search_application(df):
|
109 |
+
"""
|
110 |
+
Handles the user input and searches for the application number in the DataFrame.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
df: The DataFrame containing application numbers and decisions.
|
114 |
+
"""
|
115 |
+
user_input = st.text_input("Enter your Application Number (including IRL if applicable):")
|
116 |
+
|
117 |
+
if user_input:
|
118 |
+
# Validate user input
|
119 |
+
if "irl" in user_input.lower():
|
120 |
+
try:
|
121 |
+
application_number = int("".join(filter(str.isdigit, user_input.lower().split("irl")[-1])))
|
122 |
+
if len(str(application_number)) < 8:
|
123 |
+
st.warning("Please enter a valid application number with at least 8 digits after IRL.")
|
124 |
+
return
|
125 |
+
except ValueError:
|
126 |
+
st.error("Invalid input after IRL. Please enter only digits.")
|
127 |
+
return
|
128 |
+
else:
|
129 |
+
if not user_input.isdigit() or len(user_input) < 8:
|
130 |
+
st.warning("Please enter at least 8 digits for your VISA application number.")
|
131 |
+
return
|
132 |
+
elif len(user_input) > 8:
|
133 |
+
st.warning("The application number cannot exceed 8 digits. Please correct your input.")
|
134 |
+
return
|
135 |
+
application_number = int(user_input)
|
136 |
+
|
137 |
+
# Search for the application number in the DataFrame
|
138 |
+
result = df[df["Application Number"] == application_number]
|
139 |
+
|
140 |
+
if not result.empty:
|
141 |
+
decision = result.iloc[0]["Decision"]
|
142 |
+
if decision.lower() == "refused":
|
143 |
+
st.error(f"Application Number: {application_number}\n\nDecision: **Refused**")
|
144 |
+
elif decision.lower() == "approved":
|
145 |
+
st.success(f"Application Number: {application_number}\n\nDecision: **Approved**")
|
146 |
+
else:
|
147 |
+
st.info(f"Application Number: {application_number}\n\nDecision: **{decision}**")
|
148 |
+
else:
|
149 |
+
st.warning(f"No record found for Application Number: {application_number}.")
|
150 |
+
|
151 |
+
# Find nearest application numbers using binary search
|
152 |
+
before, after = binary_search_nearest(df, application_number)
|
153 |
+
|
154 |
+
nearest_records = pd.DataFrame({
|
155 |
+
"Nearest Application": ["Before", "After"],
|
156 |
+
"Application Number": [before, after],
|
157 |
+
"Decision": [
|
158 |
+
df[df["Application Number"] == before]["Decision"].values[0] if before else None,
|
159 |
+
df[df["Application Number"] == after]["Decision"].values[0] if after else None
|
160 |
+
],
|
161 |
+
"Difference": [
|
162 |
+
application_number - before if before else None,
|
163 |
+
after - application_number if after else None
|
164 |
+
]
|
165 |
+
}).dropna()
|
166 |
+
|
167 |
+
if not nearest_records.empty:
|
168 |
+
st.subheader("Nearest Application Numbers")
|
169 |
+
st.table(nearest_records.reset_index(drop=True))
|
170 |
+
else:
|
171 |
+
st.info("No nearest application numbers found.")
|
172 |
+
|
173 |
+
# ------------------------------------------------------------------------------------
|
174 |
+
# Main Streamlit Application Logic
|
175 |
+
# ------------------------------------------------------------------------------------
|
176 |
+
|
177 |
+
def main():
|
178 |
+
st.title("Visa Application Status Checker")
|
179 |
+
|
180 |
+
# Fetch and prepare the data
|
181 |
+
ods_file = fetch_ods_file()
|
182 |
+
if ods_file:
|
183 |
+
df = prepare_dataframe(ods_file)
|
184 |
+
if df is not None:
|
185 |
+
search_application(df)
|
186 |
+
else:
|
187 |
+
st.error("Failed to prepare the data.")
|
188 |
+
else:
|
189 |
+
st.error("Failed to fetch the .ods file.")
|
190 |
+
|
191 |
+
if __name__ == "__main__":
|
192 |
+
main()
|