import requests # For making HTTP requests import pandas as pd import streamlit as st from io import BytesIO from bs4 import BeautifulSoup # Add this import for BeautifulSoup # Assuming fetch_data() is already defined, call this function to fetch the data @st.cache_data(ttl=3600) def fetch_data(): # URL of the website to scrape url = "https://www.ireland.ie/en/india/newdelhi/services/visas/processing-times-and-decisions/" headers = { "User-Agent": ( "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" ) } # Fetch the webpage response = requests.get(url, headers=headers) if response.status_code != 200: st.error("Failed to fetch the webpage. Please try again later.") return None # Parse the HTML to find the .ods link soup = BeautifulSoup(response.content, "html.parser") file_url = None for link in soup.find_all("a"): if "Visa decisions made from" in link.get_text(): file_url = link.get("href") if not file_url.startswith("http"): file_url = requests.compat.urljoin(url, file_url) break if not file_url: st.error("Could not find the visa decisions file link on the website.") return None # Fetch the .ods file ods_response = requests.get(file_url, headers=headers) if ods_response.status_code != 200: st.error("Failed to download the visa decisions file.") return None # Process the .ods file ods_file = BytesIO(ods_response.content) df = pd.read_excel(ods_file, engine="odf") # Drop unnecessary columns df.dropna(how="all", inplace=True) # Drop rows with all NaN values df.reset_index(drop=True, inplace=True) # Keep only the first two columns if len(df.columns) > 2: df = df.iloc[:, :2] # Keep only the first two columns # Rename columns if len(df.columns) == 2: df.columns = ["Application Number", "Decision"] else: st.error("Insufficient data columns detected.") return None df["Application Number"] = df["Application Number"].astype(str) # Store the dataframe as a global variable for future use return df # Now, define precomputed_df to be used in other scripts precomputed_df = fetch_data() # Precompute the dataframe