import requests import pandas as pd from io import BytesIO from bs4 import BeautifulSoup import streamlit as st # Streamlit app title st.title("Visa Application Status Checker") # URL of the website to scrape url = "https://www.ireland.ie/en/india/newdelhi/services/visas/processing-times-and-decisions/" # Headers to mimic a browser request headers = { "User-Agent": ( "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" ) } # Step 1: Function to fetch and cache the .ods file @st.cache_data(ttl=3600, max_entries=1) def fetch_ods_file(): response = requests.get(url, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') # Find all anchor tags links = soup.find_all('a') # Search for the link containing the specific text file_url = None for link in links: link_text = link.get_text(strip=True) if "Visa decisions made from 1 January 2024 to" in link_text: file_url = link.get('href') file_name = link_text break if file_url: # Make the link absolute if it is relative if not file_url.startswith('http'): file_url = requests.compat.urljoin(url, file_url) file_response = requests.get(file_url, headers=headers) if file_response.status_code == 200: return BytesIO(file_response.content), file_name else: st.error(f"Failed to download the file. Status code: {file_response.status_code}") else: st.error("The specified link was not found.") else: st.error(f"Failed to retrieve the webpage. Status code: {response.status_code}") return None, None # Step 2: Fetch the cached .ods file ods_file, cached_file_name = fetch_ods_file() if ods_file: try: # Step 3: Read the .ods file into a DataFrame df = pd.read_excel(ods_file, engine='odf') # Clean up the DataFrame by dropping unnecessary columns df.drop(columns=["Unnamed: 0", "Unnamed: 1"], inplace=True, errors='ignore') # Drop empty rows and reset index df.dropna(how='all', inplace=True) df.reset_index(drop=True, inplace=True) # Identify the header row and reformat DataFrame for idx, row in df.iterrows(): if row['Unnamed: 2'] == 'Application Number' and row['Unnamed: 3'] == 'Decision': df.columns = ['Application Number', 'Decision'] df = df.iloc[idx + 1:] # Skip the header row break # Reset index after cleaning df.reset_index(drop=True, inplace=True) # Convert "Application Number" to string for consistency df['Application Number'] = df['Application Number'].astype(str) # Step 4: Get user input for application number using Streamlit user_input = st.text_input("Enter your Application Number (including IRL if applicable):") if user_input: # Input validation logic if "irl" in user_input.lower(): try: application_number = int("".join(filter(str.isdigit, user_input.lower().split("irl")[-1]))) if len(str(application_number)) < 8: st.warning("Please enter a valid application number with at least 8 digits after IRL.") st.stop() except ValueError: st.error("Invalid input after IRL. Please enter only digits.") st.stop() else: if not user_input.isdigit() or len(user_input) < 8: st.warning("Please enter at least 8 digits for your VISA application number.") st.stop() application_number = int(user_input) # Check if the application number exists in the DataFrame result = df[df['Application Number'] == str(application_number)] if not result.empty: decision = result.iloc[0]['Decision'] st.success(f"Application Number: **{application_number}**\n\nDecision: **{decision}**") else: st.warning(f"No record found for Application Number: {application_number}.") # Find the nearest application numbers df['Application Number'] = df['Application Number'].astype(int) df['Difference'] = abs(df['Application Number'] - application_number) nearest_records = df.nsmallest(2, 'Difference') if not nearest_records.empty: st.subheader("Nearest Application Numbers") st.table(nearest_records[['Application Number', 'Decision', 'Difference']]) else: st.info("No nearest application numbers found.") except Exception as e: st.error(f"Error reading the .ods file: {e}") else: st.error("No file data available.")