Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,50 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
gr.Interface.load("models/Salesforce/blip-image-captioning-base").launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
4 |
+
|
5 |
+
import re
|
6 |
+
import string
|
7 |
+
import nltk
|
8 |
+
nltk.download('stopwords')
|
9 |
+
nltk.download('wordnet')
|
10 |
+
|
11 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
+
|
14 |
+
def hashtag_generator(image):
|
15 |
+
raw_image = Image.fromarray(image).convert('RGB')
|
16 |
+
inputs = processor(raw_image, return_tensors="pt")
|
17 |
+
out = model.generate(
|
18 |
+
**inputs,
|
19 |
+
num_return_sequences=4,
|
20 |
+
max_length=32,
|
21 |
+
early_stopping=True,
|
22 |
+
num_beams=4,
|
23 |
+
no_repeat_ngram_size=2,
|
24 |
+
length_penalty=0.8
|
25 |
+
)
|
26 |
+
captions = ""
|
27 |
+
for i, caption in enumerate(out):
|
28 |
+
captions = captions +processor.decode(caption, skip_special_tokens=True) + " ,"
|
29 |
+
|
30 |
+
text = "".join([word.lower() for word in captions if word not in string.punctuation])
|
31 |
+
tokens = re.split('\W+', text)
|
32 |
+
text = [wn.lemmatize(word) for word in tokens if word not in stopwords]
|
33 |
+
words = set(text)
|
34 |
+
hashtags = ""
|
35 |
+
for hashtag in words:
|
36 |
+
if len(hashtag) == 0:
|
37 |
+
pass
|
38 |
+
else:
|
39 |
+
hashtags = hashtags + f" ,#{hashtag}"
|
40 |
+
return hashtags[2:]
|
41 |
+
|
42 |
+
gr.Interface(hashtag_generator, inputs= gr.inputs.Image(), outputs = gr.outputs.Textbox(), live = True).launch()
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
|
|