Spaces:
Sleeping
Sleeping
import streamlit as st | |
import joblib | |
import pandas as pd | |
import string | |
import re | |
import nltk | |
nltk.download('stopwords') | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
model = joblib.load("ridge_classifier.pkl") | |
data = pd.read_csv("data_modified.csv") | |
ps = nltk.PorterStemmer() | |
stopwords = nltk.corpus.stopwords.words('english') | |
def clean_text(text): | |
text = "".join([word.lower() | |
for word in text if word not in string.punctuation]) | |
tokens = re.split('\W+', text) | |
text = [ps.stem(word) for word in tokens if word not in stopwords] | |
return text | |
vectoriz = TfidfVectorizer(analyzer=clean_text) | |
vectorizer = vectoriz.fit(data["text"]) | |
def count_punct(text): | |
count = sum([1 for char in text if char in string.punctuation]) | |
return round(count/(len(text) - text.count(" ")), 3)*100 | |
st.title("Sentiment analysis classification") | |
text = st.text_input("Type the text here") | |
if st.button("Predict"): | |
#text = str(text) | |
trans = vectorizer.transform([text]) | |
body_len = len(text) - text.count(" ") | |
punct = count_punct(text) | |
#k = {"body_len": [body_len], "punc%": [punct]} | |
k = {"body_len": [body_len], "punc%": [punct]} | |
df = pd.DataFrame(k) | |
#df.columns = df.columns.astype(str) | |
test_vect = pd.concat([df.reset_index(drop=True), | |
pd.DataFrame(trans.toarray())], axis=1) | |
prediction = model.predict(test_vect) | |
st.write(prediction[0]) | |