Spaces:
Sleeping
Sleeping
First commit
Browse files- .gitignore +5 -0
- app.py +43 -0
- ctrnet_infer.py +201 -0
- images/1.jpg +0 -0
- images/2.jpg +0 -0
- images/4.jpg +0 -0
- models/CTRNet_G.onnx +3 -0
- rapid_ch_det/__init__.py +4 -0
- rapid_ch_det/config.yaml +29 -0
- rapid_ch_det/models/ch_PP-OCRv3_det_infer.onnx +3 -0
- rapid_ch_det/text_detect.py +134 -0
- rapid_ch_det/utils.py +461 -0
- requirements.txt +6 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
|
3 |
+
*.pyc
|
4 |
+
|
5 |
+
__pycache__/
|
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- encoding: utf-8 -*-
|
2 |
+
# @Author: SWHL
|
3 |
+
# @Contact: liekkaskono@163.com
|
4 |
+
import os
|
5 |
+
os.system('pip install -r requirements.txt')
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
from ctrnet_infer import CTRNetInfer
|
11 |
+
|
12 |
+
|
13 |
+
def inference(img):
|
14 |
+
img_path = img.name
|
15 |
+
img = cv2.imread(img_path)
|
16 |
+
pred = ctrnet(img)
|
17 |
+
pred = cv2.cvtColor(pred, cv2.COLOR_BGR2RGB)
|
18 |
+
return pred
|
19 |
+
|
20 |
+
|
21 |
+
model_path = 'models/CTRNet_G.onnx'
|
22 |
+
ctrnet = CTRNetInfer(model_path)
|
23 |
+
|
24 |
+
title = 'CTRNet Demo'
|
25 |
+
description = '''This is the demo for the paper “Don't Forget Me: Accurate Background Recovery for Text Removal via Modeling Local-Global Context”. Github Repo: https://github.com/lcy0604/CTRNet'''
|
26 |
+
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
|
27 |
+
examples = [['images/1.jpg'], ['images/2.jpg'], ['images/4.jpg']]
|
28 |
+
|
29 |
+
gr.Interface(
|
30 |
+
inference,
|
31 |
+
inputs=[
|
32 |
+
gr.inputs.Image(type='file', label='Input'),
|
33 |
+
],
|
34 |
+
outputs=[
|
35 |
+
gr.outputs.Image(type='file', label='Output_image'),
|
36 |
+
],
|
37 |
+
title=title,
|
38 |
+
description=description,
|
39 |
+
examples=examples,
|
40 |
+
css=css,
|
41 |
+
allow_flagging='never',
|
42 |
+
enable_queue=True
|
43 |
+
).launch(debug=True, enable_queue=True)
|
ctrnet_infer.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- encoding: utf-8 -*-
|
2 |
+
# @Author: SWHL
|
3 |
+
# @Contact: liekkaskono@163.com
|
4 |
+
import copy
|
5 |
+
import time
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import pyclipper
|
10 |
+
from onnxruntime import InferenceSession
|
11 |
+
from shapely.geometry import Polygon
|
12 |
+
|
13 |
+
from rapid_ch_det import TextDetector
|
14 |
+
|
15 |
+
|
16 |
+
class SimpleDataset():
|
17 |
+
def __call__(self, img: np.ndarray, bboxes: np.ndarray):
|
18 |
+
'''
|
19 |
+
bboxes: (N, 4, 2)
|
20 |
+
'''
|
21 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
22 |
+
|
23 |
+
gt_instance = np.zeros(img.shape[:2], dtype='uint8')
|
24 |
+
for i in range(len(bboxes)):
|
25 |
+
cv2.drawContours(gt_instance, [bboxes[i]], -1, i + 1, -1)
|
26 |
+
gt_text = gt_instance.copy()
|
27 |
+
gt_text[gt_text > 0] = 1
|
28 |
+
gt_text = gt_text[None, None, ...].astype(np.float32)
|
29 |
+
|
30 |
+
canvas, shrink_mask, mask_ori = self.get_seg_map(img, bboxes)
|
31 |
+
soft_mask = canvas + mask_ori
|
32 |
+
index_mask = np.where(soft_mask > 1)
|
33 |
+
soft_mask[index_mask] = 1
|
34 |
+
soft_mask = soft_mask[None, None, ...].astype(np.float32)
|
35 |
+
|
36 |
+
img = np.transpose(img, (2, 0, 1)).astype(np.float32) / 255.0
|
37 |
+
img = img[None, ...]
|
38 |
+
structure_im = copy.deepcopy(img)
|
39 |
+
return img, structure_im, gt_text, soft_mask
|
40 |
+
|
41 |
+
def draw_border_map(self, polygon, canvas, mask_ori, mask):
|
42 |
+
polygon = np.array(polygon)
|
43 |
+
assert polygon.ndim == 2
|
44 |
+
assert polygon.shape[1] == 2
|
45 |
+
|
46 |
+
### shrink box ###
|
47 |
+
polygon_shape = Polygon(polygon)
|
48 |
+
distance = polygon_shape.area * \
|
49 |
+
(1 - np.power(0.95, 2)) / polygon_shape.length
|
50 |
+
subject = [tuple(l) for l in polygon]
|
51 |
+
padding = pyclipper.PyclipperOffset()
|
52 |
+
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
53 |
+
padded_polygon = np.array(padding.Execute(-distance)[0])
|
54 |
+
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
|
55 |
+
### shrink box ###
|
56 |
+
|
57 |
+
cv2.fillPoly(mask_ori, [polygon.astype(np.int32)], 1.0)
|
58 |
+
|
59 |
+
polygon = padded_polygon
|
60 |
+
polygon_shape = Polygon(padded_polygon)
|
61 |
+
distance = polygon_shape.area * \
|
62 |
+
(1 - np.power(0.4, 2)) / polygon_shape.length
|
63 |
+
subject = [tuple(l) for l in polygon]
|
64 |
+
padding = pyclipper.PyclipperOffset()
|
65 |
+
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
66 |
+
padded_polygon = np.array(padding.Execute(distance)[0])
|
67 |
+
|
68 |
+
xmin = padded_polygon[:, 0].min()
|
69 |
+
xmax = padded_polygon[:, 0].max()
|
70 |
+
ymin = padded_polygon[:, 1].min()
|
71 |
+
ymax = padded_polygon[:, 1].max()
|
72 |
+
width = xmax - xmin + 1
|
73 |
+
height = ymax - ymin + 1
|
74 |
+
|
75 |
+
polygon[:, 0] = polygon[:, 0] - xmin
|
76 |
+
polygon[:, 1] = polygon[:, 1] - ymin
|
77 |
+
|
78 |
+
xs = np.broadcast_to(
|
79 |
+
np.linspace(0, width - 1, num=width).reshape(1, width), (height, width))
|
80 |
+
ys = np.broadcast_to(
|
81 |
+
np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width))
|
82 |
+
|
83 |
+
distance_map = np.zeros(
|
84 |
+
(polygon.shape[0], height, width), dtype=np.float32)
|
85 |
+
for i in range(polygon.shape[0]):
|
86 |
+
j = (i + 1) % polygon.shape[0]
|
87 |
+
# import pdb;pdb.set_trace()
|
88 |
+
absolute_distance = self.coumpute_distance(xs, ys, polygon[i], polygon[j])
|
89 |
+
distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
|
90 |
+
distance_map = distance_map.min(axis=0)
|
91 |
+
|
92 |
+
xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
|
93 |
+
xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
|
94 |
+
ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
|
95 |
+
ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
|
96 |
+
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax(
|
97 |
+
1 - distance_map[
|
98 |
+
ymin_valid-ymin:ymax_valid-ymax+height,
|
99 |
+
xmin_valid-xmin:xmax_valid-xmax+width],
|
100 |
+
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1])
|
101 |
+
|
102 |
+
@staticmethod
|
103 |
+
def coumpute_distance(xs, ys, point_1, point_2):
|
104 |
+
'''
|
105 |
+
compute the distance from point to a line
|
106 |
+
ys: coordinates in the first axis
|
107 |
+
xs: coordinates in the second axis
|
108 |
+
point_1, point_2: (x, y), the end of the line
|
109 |
+
'''
|
110 |
+
height, width = xs.shape[:2]
|
111 |
+
square_distance_1 = np.square(
|
112 |
+
xs - point_1[0]) + np.square(ys - point_1[1])
|
113 |
+
square_distance_2 = np.square(
|
114 |
+
xs - point_2[0]) + np.square(ys - point_2[1])
|
115 |
+
square_distance = np.square(
|
116 |
+
point_1[0] - point_2[0]) + np.square(point_1[1] - point_2[1])
|
117 |
+
|
118 |
+
cosin = (square_distance - square_distance_1 - square_distance_2) / \
|
119 |
+
(2 * np.sqrt(square_distance_1 * square_distance_2) + 1e-50)
|
120 |
+
square_sin = 1 - np.square(cosin)
|
121 |
+
square_sin = np.nan_to_num(square_sin)
|
122 |
+
result = np.sqrt(square_distance_1 * square_distance_2 *
|
123 |
+
square_sin / square_distance)
|
124 |
+
|
125 |
+
result[cosin < 0] = np.sqrt(np.fmin(
|
126 |
+
square_distance_1, square_distance_2))[cosin < 0]
|
127 |
+
# extend_line(point_1, point_2, result)
|
128 |
+
return result
|
129 |
+
|
130 |
+
def get_seg_map(self, img, label):
|
131 |
+
canvas = np.zeros(img.shape[:2], dtype=np.float32)
|
132 |
+
mask = np.zeros(img.shape[:2], dtype=np.float32)
|
133 |
+
mask_ori = np.zeros(img.shape[:2], dtype=np.float32)
|
134 |
+
polygons = label
|
135 |
+
|
136 |
+
for i in range(len(polygons)):
|
137 |
+
self.draw_border_map(polygons[i], canvas, mask_ori, mask=mask)
|
138 |
+
return canvas, mask, mask_ori
|
139 |
+
|
140 |
+
|
141 |
+
class CTRNetInfer():
|
142 |
+
def __init__(self, model_path) -> None:
|
143 |
+
self.session = InferenceSession(model_path,
|
144 |
+
providers=['CPUExecutionProvider'])
|
145 |
+
self.dataset = SimpleDataset()
|
146 |
+
self.text_det = TextDetector()
|
147 |
+
self.input_shape = (512, 512)
|
148 |
+
|
149 |
+
def __call__(self, ori_img):
|
150 |
+
ori_img_shape = ori_img.shape[:2]
|
151 |
+
bboxes = self.text_det(ori_img)[0].astype(np.int64)
|
152 |
+
|
153 |
+
# resize img 到512x512
|
154 |
+
resize_img = cv2.resize(ori_img, self.input_shape,
|
155 |
+
interpolation=cv2.INTER_LINEAR)
|
156 |
+
resize_bboxes = self.get_resized_points(bboxes,
|
157 |
+
ori_img_shape,
|
158 |
+
self.input_shape)
|
159 |
+
|
160 |
+
img, structure_im, gt_text, soft_mask = self.dataset(
|
161 |
+
resize_img, resize_bboxes)
|
162 |
+
input_dict = {
|
163 |
+
'input': img,
|
164 |
+
'gt_text': gt_text,
|
165 |
+
'soft_mask': soft_mask,
|
166 |
+
'structure_im': structure_im
|
167 |
+
}
|
168 |
+
prediction = self.session.run(None, input_dict)[3]
|
169 |
+
|
170 |
+
withMask_prediction = prediction * soft_mask + img * (1 - soft_mask)
|
171 |
+
withMask_prediction = np.transpose(withMask_prediction, (0, 2, 3, 1)) * 255
|
172 |
+
withMask_prediction = withMask_prediction.squeeze().astype(np.uint8)
|
173 |
+
withMask_prediction = cv2.cvtColor(withMask_prediction,
|
174 |
+
cv2.COLOR_BGR2RGB)
|
175 |
+
ori_pred = cv2.resize(withMask_prediction, ori_img_shape[::-1],
|
176 |
+
interpolation=cv2.INTER_LINEAR)
|
177 |
+
return ori_pred
|
178 |
+
|
179 |
+
@staticmethod
|
180 |
+
def get_resized_points(cur_points, cur_shape, new_shape):
|
181 |
+
cur_points = np.array(cur_points)
|
182 |
+
|
183 |
+
ratio_x = cur_shape[0] / new_shape[0]
|
184 |
+
ratio_y = cur_shape[1] / new_shape[1]
|
185 |
+
cur_points[:, :, 0] = cur_points[:, :, 0] / ratio_x
|
186 |
+
cur_points[:, :, 1] = cur_points[:, :, 1] / ratio_y
|
187 |
+
return cur_points.astype(np.int64)
|
188 |
+
|
189 |
+
|
190 |
+
if __name__ == '__main__':
|
191 |
+
model_path = 'CTRNet_G.onnx'
|
192 |
+
ctrnet = CTRNetInfer(model_path)
|
193 |
+
|
194 |
+
img_path = 'images/1.jpg'
|
195 |
+
ori_img = cv2.imread(img_path)
|
196 |
+
|
197 |
+
s = time.time()
|
198 |
+
pred = ctrnet(ori_img)
|
199 |
+
print(f'elapse: {time.time() - s}')
|
200 |
+
|
201 |
+
cv2.imwrite('pred_result.jpg', pred)
|
images/1.jpg
ADDED
images/2.jpg
ADDED
images/4.jpg
ADDED
models/CTRNet_G.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15d46cec531574c5afef5f27f287f0ccf62a911749089f7cfcbf760226a3eda8
|
3 |
+
size 842447752
|
rapid_ch_det/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- encoding: utf-8 -*-
|
2 |
+
# @Author: SWHL
|
3 |
+
# @Contact: liekkaskono@163.com
|
4 |
+
from .text_detect import TextDetector
|
rapid_ch_det/config.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_path: models/ch_PP-OCRv3_det_infer.onnx
|
2 |
+
|
3 |
+
use_cuda: false
|
4 |
+
CUDAExecutionProvider:
|
5 |
+
device_id: 0
|
6 |
+
arena_extend_strategy: kNextPowerOfTwo
|
7 |
+
cudnn_conv_algo_search: EXHAUSTIVE
|
8 |
+
do_copy_in_default_stream: true
|
9 |
+
|
10 |
+
pre_process:
|
11 |
+
DetResizeForTest:
|
12 |
+
limit_side_len: 736
|
13 |
+
limit_type: min
|
14 |
+
NormalizeImage:
|
15 |
+
std: [0.229, 0.224, 0.225]
|
16 |
+
mean: [0.485, 0.456, 0.406]
|
17 |
+
scale: 1./255.
|
18 |
+
order: hwc
|
19 |
+
ToCHWImage:
|
20 |
+
KeepKeys:
|
21 |
+
keep_keys: ['image', 'shape']
|
22 |
+
|
23 |
+
post_process:
|
24 |
+
thresh: 0.3
|
25 |
+
box_thresh: 0.5
|
26 |
+
max_candidates: 1000
|
27 |
+
unclip_ratio: 1.6
|
28 |
+
use_dilation: true
|
29 |
+
score_mode: "fast"
|
rapid_ch_det/models/ch_PP-OCRv3_det_infer.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3439588c030faea393a54515f51e983d8e155b19a2e8aba7891934c1cf0de526
|
3 |
+
size 2432880
|
rapid_ch_det/text_detect.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# -*- encoding: utf-8 -*-
|
15 |
+
# @Author: SWHL
|
16 |
+
# @Contact: liekkaskono@163.com
|
17 |
+
import argparse
|
18 |
+
import time
|
19 |
+
|
20 |
+
import cv2
|
21 |
+
from pathlib import Path
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
try:
|
25 |
+
from .utils import (DBPostProcess, create_operators,
|
26 |
+
transform, read_yaml, OrtInferSession)
|
27 |
+
except:
|
28 |
+
from utils import (DBPostProcess, create_operators,
|
29 |
+
transform, read_yaml, OrtInferSession)
|
30 |
+
|
31 |
+
root_dir = Path(__file__).resolve().parent
|
32 |
+
|
33 |
+
|
34 |
+
class TextDetector():
|
35 |
+
def __init__(self, config=str(root_dir / 'config.yaml')):
|
36 |
+
if isinstance(config, str):
|
37 |
+
config = read_yaml(config)
|
38 |
+
config['model_path'] = str(root_dir / config['model_path'])
|
39 |
+
|
40 |
+
self.preprocess_op = create_operators(config['pre_process'])
|
41 |
+
self.postprocess_op = DBPostProcess(**config['post_process'])
|
42 |
+
|
43 |
+
session_instance = OrtInferSession(config)
|
44 |
+
self.session = session_instance.session
|
45 |
+
self.input_name = session_instance.get_input_name()
|
46 |
+
|
47 |
+
def __call__(self, img):
|
48 |
+
if img is None:
|
49 |
+
raise ValueError('img is None')
|
50 |
+
|
51 |
+
ori_im_shape = img.shape[:2]
|
52 |
+
|
53 |
+
data = {'image': img}
|
54 |
+
data = transform(data, self.preprocess_op)
|
55 |
+
img, shape_list = data
|
56 |
+
if img is None:
|
57 |
+
return None, 0
|
58 |
+
|
59 |
+
img = np.expand_dims(img, axis=0).astype(np.float32)
|
60 |
+
shape_list = np.expand_dims(shape_list, axis=0)
|
61 |
+
|
62 |
+
starttime = time.time()
|
63 |
+
preds = self.session.run(None, {self.input_name: img})
|
64 |
+
|
65 |
+
post_result = self.postprocess_op(preds[0], shape_list)
|
66 |
+
|
67 |
+
dt_boxes = post_result[0]['points']
|
68 |
+
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im_shape)
|
69 |
+
elapse = time.time() - starttime
|
70 |
+
return dt_boxes, elapse
|
71 |
+
|
72 |
+
def order_points_clockwise(self, pts):
|
73 |
+
"""
|
74 |
+
reference from:
|
75 |
+
https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
|
76 |
+
sort the points based on their x-coordinates
|
77 |
+
"""
|
78 |
+
xSorted = pts[np.argsort(pts[:, 0]), :]
|
79 |
+
|
80 |
+
# grab the left-most and right-most points from the sorted
|
81 |
+
# x-roodinate points
|
82 |
+
leftMost = xSorted[:2, :]
|
83 |
+
rightMost = xSorted[2:, :]
|
84 |
+
|
85 |
+
# now, sort the left-most coordinates according to their
|
86 |
+
# y-coordinates so we can grab the top-left and bottom-left
|
87 |
+
# points, respectively
|
88 |
+
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
|
89 |
+
(tl, bl) = leftMost
|
90 |
+
|
91 |
+
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
|
92 |
+
(tr, br) = rightMost
|
93 |
+
|
94 |
+
rect = np.array([tl, tr, br, bl], dtype="float32")
|
95 |
+
return rect
|
96 |
+
|
97 |
+
def clip_det_res(self, points, img_height, img_width):
|
98 |
+
for pno in range(points.shape[0]):
|
99 |
+
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
|
100 |
+
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
|
101 |
+
return points
|
102 |
+
|
103 |
+
def filter_tag_det_res(self, dt_boxes, image_shape):
|
104 |
+
img_height, img_width = image_shape[:2]
|
105 |
+
dt_boxes_new = []
|
106 |
+
for box in dt_boxes:
|
107 |
+
box = self.order_points_clockwise(box)
|
108 |
+
box = self.clip_det_res(box, img_height, img_width)
|
109 |
+
rect_width = int(np.linalg.norm(box[0] - box[1]))
|
110 |
+
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
111 |
+
if rect_width <= 3 or rect_height <= 3:
|
112 |
+
continue
|
113 |
+
dt_boxes_new.append(box)
|
114 |
+
dt_boxes = np.array(dt_boxes_new)
|
115 |
+
return dt_boxes
|
116 |
+
|
117 |
+
|
118 |
+
if __name__ == "__main__":
|
119 |
+
parser = argparse.ArgumentParser()
|
120 |
+
parser.add_argument('--config_path', type=str, default='config.yaml')
|
121 |
+
parser.add_argument('--image_path', type=str, default=None)
|
122 |
+
args = parser.parse_args()
|
123 |
+
|
124 |
+
config = read_yaml(args.config_path)
|
125 |
+
|
126 |
+
text_detector = TextDetector(config)
|
127 |
+
|
128 |
+
img = cv2.imread(args.image_path)
|
129 |
+
dt_boxes, elapse = text_detector(img)
|
130 |
+
|
131 |
+
from utils import draw_text_det_res
|
132 |
+
src_im = draw_text_det_res(dt_boxes, args.image_path)
|
133 |
+
cv2.imwrite('det_results.jpg', src_im)
|
134 |
+
print('The det_results.jpg has been saved in the current directory.')
|
rapid_ch_det/utils.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
# -*- encoding: utf-8 -*-
|
17 |
+
# @Author: SWHL
|
18 |
+
# @Contact: liekkaskono@163.com
|
19 |
+
import sys
|
20 |
+
import warnings
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
import cv2
|
24 |
+
import numpy as np
|
25 |
+
import pyclipper
|
26 |
+
import six
|
27 |
+
import yaml
|
28 |
+
from onnxruntime import (GraphOptimizationLevel, InferenceSession,
|
29 |
+
SessionOptions, get_available_providers, get_device)
|
30 |
+
from shapely.geometry import Polygon
|
31 |
+
|
32 |
+
root_dir = Path(__file__).resolve().parent.parent
|
33 |
+
|
34 |
+
|
35 |
+
class OrtInferSession():
|
36 |
+
def __init__(self, config):
|
37 |
+
sess_opt = SessionOptions()
|
38 |
+
sess_opt.log_severity_level = 4
|
39 |
+
sess_opt.enable_cpu_mem_arena = False
|
40 |
+
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
|
41 |
+
|
42 |
+
cuda_ep = 'CUDAExecutionProvider'
|
43 |
+
cpu_ep = 'CPUExecutionProvider'
|
44 |
+
cpu_provider_options = {
|
45 |
+
"arena_extend_strategy": "kSameAsRequested",
|
46 |
+
}
|
47 |
+
|
48 |
+
EP_list = []
|
49 |
+
if config['use_cuda'] and get_device() == 'GPU' \
|
50 |
+
and cuda_ep in get_available_providers():
|
51 |
+
EP_list = [(cuda_ep, config[cuda_ep])]
|
52 |
+
EP_list.append((cpu_ep, cpu_provider_options))
|
53 |
+
|
54 |
+
config['model_path'] = str(root_dir / config['model_path'])
|
55 |
+
self._verify_model(config['model_path'])
|
56 |
+
self.session = InferenceSession(config['model_path'],
|
57 |
+
sess_options=sess_opt,
|
58 |
+
providers=EP_list)
|
59 |
+
|
60 |
+
if config['use_cuda'] and cuda_ep not in self.session.get_providers():
|
61 |
+
warnings.warn(f'{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n'
|
62 |
+
'Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, '
|
63 |
+
'you can check their relations from the offical web site: '
|
64 |
+
'https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html',
|
65 |
+
RuntimeWarning)
|
66 |
+
|
67 |
+
def get_input_name(self, input_idx=0):
|
68 |
+
return self.session.get_inputs()[input_idx].name
|
69 |
+
|
70 |
+
def get_output_name(self, output_idx=0):
|
71 |
+
return self.session.get_outputs()[output_idx].name
|
72 |
+
|
73 |
+
@staticmethod
|
74 |
+
def _verify_model(model_path):
|
75 |
+
model_path = Path(model_path)
|
76 |
+
if not model_path.exists():
|
77 |
+
raise FileNotFoundError(f'{model_path} does not exists.')
|
78 |
+
if not model_path.is_file():
|
79 |
+
raise FileExistsError(f'{model_path} is not a file.')
|
80 |
+
|
81 |
+
|
82 |
+
def read_yaml(yaml_path):
|
83 |
+
with open(yaml_path, 'rb') as f:
|
84 |
+
data = yaml.load(f, Loader=yaml.Loader)
|
85 |
+
return data
|
86 |
+
|
87 |
+
|
88 |
+
class DecodeImage():
|
89 |
+
""" decode image """
|
90 |
+
|
91 |
+
def __init__(self, img_mode='RGB', channel_first=False):
|
92 |
+
self.img_mode = img_mode
|
93 |
+
self.channel_first = channel_first
|
94 |
+
|
95 |
+
def __call__(self, data):
|
96 |
+
img = data['image']
|
97 |
+
if six.PY2:
|
98 |
+
assert type(img) is str and len(img) > 0, "invalid input 'img' in DecodeImage"
|
99 |
+
else:
|
100 |
+
assert type(img) is bytes and len(img) > 0, "invalid input 'img' in DecodeImage"
|
101 |
+
|
102 |
+
img = np.frombuffer(img, dtype='uint8')
|
103 |
+
img = cv2.imdecode(img, 1)
|
104 |
+
if img is None:
|
105 |
+
return None
|
106 |
+
|
107 |
+
if self.img_mode == 'GRAY':
|
108 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
109 |
+
elif self.img_mode == 'RGB':
|
110 |
+
assert img.shape[2] == 3, f'invalid shape of image[{img.shape}]'
|
111 |
+
img = img[:, :, ::-1]
|
112 |
+
|
113 |
+
if self.channel_first:
|
114 |
+
img = img.transpose((2, 0, 1))
|
115 |
+
data['image'] = img
|
116 |
+
return data
|
117 |
+
|
118 |
+
|
119 |
+
class NormalizeImage():
|
120 |
+
""" normalize image such as substract mean, divide std"""
|
121 |
+
|
122 |
+
def __init__(self, scale=None, mean=None, std=None, order='chw'):
|
123 |
+
if isinstance(scale, str):
|
124 |
+
scale = eval(scale)
|
125 |
+
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
|
126 |
+
mean = mean if mean is not None else [0.485, 0.456, 0.406]
|
127 |
+
std = std if std is not None else [0.229, 0.224, 0.225]
|
128 |
+
|
129 |
+
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
|
130 |
+
self.mean = np.array(mean).reshape(shape).astype('float32')
|
131 |
+
self.std = np.array(std).reshape(shape).astype('float32')
|
132 |
+
|
133 |
+
def __call__(self, data):
|
134 |
+
img = np.array(data['image']).astype(np.float32)
|
135 |
+
data['image'] = (img * self.scale - self.mean) / self.std
|
136 |
+
return data
|
137 |
+
|
138 |
+
|
139 |
+
class ToCHWImage():
|
140 |
+
""" convert hwc image to chw image"""
|
141 |
+
def __init__(self):
|
142 |
+
pass
|
143 |
+
|
144 |
+
def __call__(self, data):
|
145 |
+
img = np.array(data['image'])
|
146 |
+
data['image'] = img.transpose((2, 0, 1))
|
147 |
+
return data
|
148 |
+
|
149 |
+
|
150 |
+
class KeepKeys():
|
151 |
+
def __init__(self, keep_keys):
|
152 |
+
self.keep_keys = keep_keys
|
153 |
+
|
154 |
+
def __call__(self, data):
|
155 |
+
data_list = []
|
156 |
+
for key in self.keep_keys:
|
157 |
+
data_list.append(data[key])
|
158 |
+
return data_list
|
159 |
+
|
160 |
+
|
161 |
+
class DetResizeForTest():
|
162 |
+
def __init__(self, **kwargs):
|
163 |
+
super(DetResizeForTest, self).__init__()
|
164 |
+
self.resize_type = 0
|
165 |
+
if 'image_shape' in kwargs:
|
166 |
+
self.image_shape = kwargs['image_shape']
|
167 |
+
self.resize_type = 1
|
168 |
+
elif 'limit_side_len' in kwargs:
|
169 |
+
self.limit_side_len = kwargs.get('limit_side_len', 736)
|
170 |
+
self.limit_type = kwargs.get('limit_type', 'min')
|
171 |
+
|
172 |
+
if 'resize_long' in kwargs:
|
173 |
+
self.resize_type = 2
|
174 |
+
self.resize_long = kwargs.get('resize_long', 960)
|
175 |
+
else:
|
176 |
+
self.limit_side_len = kwargs.get('limit_side_len', 736)
|
177 |
+
self.limit_type = kwargs.get('limit_type', 'min')
|
178 |
+
|
179 |
+
def __call__(self, data):
|
180 |
+
img = data['image']
|
181 |
+
src_h, src_w = img.shape[:2]
|
182 |
+
|
183 |
+
if self.resize_type == 0:
|
184 |
+
# img, shape = self.resize_image_type0(img)
|
185 |
+
img, [ratio_h, ratio_w] = self.resize_image_type0(img)
|
186 |
+
elif self.resize_type == 2:
|
187 |
+
img, [ratio_h, ratio_w] = self.resize_image_type2(img)
|
188 |
+
else:
|
189 |
+
# img, shape = self.resize_image_type1(img)
|
190 |
+
img, [ratio_h, ratio_w] = self.resize_image_type1(img)
|
191 |
+
data['image'] = img
|
192 |
+
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
|
193 |
+
return data
|
194 |
+
|
195 |
+
def resize_image_type1(self, img):
|
196 |
+
resize_h, resize_w = self.image_shape
|
197 |
+
ori_h, ori_w = img.shape[:2] # (h, w, c)
|
198 |
+
ratio_h = float(resize_h) / ori_h
|
199 |
+
ratio_w = float(resize_w) / ori_w
|
200 |
+
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
201 |
+
# return img, np.array([ori_h, ori_w])
|
202 |
+
return img, [ratio_h, ratio_w]
|
203 |
+
|
204 |
+
def resize_image_type0(self, img):
|
205 |
+
"""
|
206 |
+
resize image to a size multiple of 32 which is required by the network
|
207 |
+
args:
|
208 |
+
img(array): array with shape [h, w, c]
|
209 |
+
return(tuple):
|
210 |
+
img, (ratio_h, ratio_w)
|
211 |
+
"""
|
212 |
+
limit_side_len = self.limit_side_len
|
213 |
+
h, w = img.shape[:2]
|
214 |
+
|
215 |
+
# limit the max side
|
216 |
+
if self.limit_type == 'max':
|
217 |
+
if max(h, w) > limit_side_len:
|
218 |
+
if h > w:
|
219 |
+
ratio = float(limit_side_len) / h
|
220 |
+
else:
|
221 |
+
ratio = float(limit_side_len) / w
|
222 |
+
else:
|
223 |
+
ratio = 1.
|
224 |
+
else:
|
225 |
+
if min(h, w) < limit_side_len:
|
226 |
+
if h < w:
|
227 |
+
ratio = float(limit_side_len) / h
|
228 |
+
else:
|
229 |
+
ratio = float(limit_side_len) / w
|
230 |
+
else:
|
231 |
+
ratio = 1.
|
232 |
+
resize_h = int(h * ratio)
|
233 |
+
resize_w = int(w * ratio)
|
234 |
+
|
235 |
+
resize_h = int(round(resize_h / 32) * 32)
|
236 |
+
resize_w = int(round(resize_w / 32) * 32)
|
237 |
+
|
238 |
+
try:
|
239 |
+
if int(resize_w) <= 0 or int(resize_h) <= 0:
|
240 |
+
return None, (None, None)
|
241 |
+
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
242 |
+
except:
|
243 |
+
print(img.shape, resize_w, resize_h)
|
244 |
+
sys.exit(0)
|
245 |
+
ratio_h = resize_h / float(h)
|
246 |
+
ratio_w = resize_w / float(w)
|
247 |
+
return img, [ratio_h, ratio_w]
|
248 |
+
|
249 |
+
def resize_image_type2(self, img):
|
250 |
+
h, w = img.shape[:2]
|
251 |
+
|
252 |
+
resize_w = w
|
253 |
+
resize_h = h
|
254 |
+
|
255 |
+
# Fix the longer side
|
256 |
+
if resize_h > resize_w:
|
257 |
+
ratio = float(self.resize_long) / resize_h
|
258 |
+
else:
|
259 |
+
ratio = float(self.resize_long) / resize_w
|
260 |
+
|
261 |
+
resize_h = int(resize_h * ratio)
|
262 |
+
resize_w = int(resize_w * ratio)
|
263 |
+
|
264 |
+
max_stride = 128
|
265 |
+
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
266 |
+
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
267 |
+
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
268 |
+
ratio_h = resize_h / float(h)
|
269 |
+
ratio_w = resize_w / float(w)
|
270 |
+
|
271 |
+
return img, [ratio_h, ratio_w]
|
272 |
+
|
273 |
+
|
274 |
+
def transform(data, ops=None):
|
275 |
+
""" transform """
|
276 |
+
if ops is None:
|
277 |
+
ops = []
|
278 |
+
|
279 |
+
for op in ops:
|
280 |
+
data = op(data)
|
281 |
+
if data is None:
|
282 |
+
return None
|
283 |
+
return data
|
284 |
+
|
285 |
+
|
286 |
+
def create_operators(op_param_dict):
|
287 |
+
"""
|
288 |
+
create operators based on the config
|
289 |
+
"""
|
290 |
+
ops = []
|
291 |
+
for op_name, param in op_param_dict.items():
|
292 |
+
if param is None:
|
293 |
+
param = {}
|
294 |
+
op = eval(op_name)(**param)
|
295 |
+
ops.append(op)
|
296 |
+
return ops
|
297 |
+
|
298 |
+
|
299 |
+
def draw_text_det_res(dt_boxes, img_path):
|
300 |
+
src_im = cv2.imread(img_path)
|
301 |
+
for box in dt_boxes:
|
302 |
+
box = np.array(box).astype(np.int32).reshape(-1, 2)
|
303 |
+
cv2.polylines(src_im, [box], True,
|
304 |
+
color=(255, 255, 0), thickness=2)
|
305 |
+
return src_im
|
306 |
+
|
307 |
+
|
308 |
+
class DBPostProcess():
|
309 |
+
"""The post process for Differentiable Binarization (DB)."""
|
310 |
+
|
311 |
+
def __init__(self,
|
312 |
+
thresh=0.3,
|
313 |
+
box_thresh=0.7,
|
314 |
+
max_candidates=1000,
|
315 |
+
unclip_ratio=2.0,
|
316 |
+
score_mode="fast",
|
317 |
+
use_dilation=False):
|
318 |
+
self.thresh = thresh
|
319 |
+
self.box_thresh = box_thresh
|
320 |
+
self.max_candidates = max_candidates
|
321 |
+
self.unclip_ratio = unclip_ratio
|
322 |
+
self.min_size = 3
|
323 |
+
self.score_mode = score_mode
|
324 |
+
|
325 |
+
if use_dilation:
|
326 |
+
self.dilation_kernel = np.array([[1, 1], [1, 1]])
|
327 |
+
else:
|
328 |
+
self.dilation_kernel = None
|
329 |
+
|
330 |
+
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
331 |
+
'''
|
332 |
+
_bitmap: single map with shape (1, H, W),
|
333 |
+
whose values are binarized as {0, 1}
|
334 |
+
'''
|
335 |
+
|
336 |
+
bitmap = _bitmap
|
337 |
+
height, width = bitmap.shape
|
338 |
+
|
339 |
+
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
|
340 |
+
cv2.CHAIN_APPROX_SIMPLE)
|
341 |
+
if len(outs) == 3:
|
342 |
+
img, contours, _ = outs[0], outs[1], outs[2]
|
343 |
+
elif len(outs) == 2:
|
344 |
+
contours, _ = outs[0], outs[1]
|
345 |
+
|
346 |
+
num_contours = min(len(contours), self.max_candidates)
|
347 |
+
|
348 |
+
boxes = []
|
349 |
+
scores = []
|
350 |
+
for index in range(num_contours):
|
351 |
+
contour = contours[index]
|
352 |
+
points, sside = self.get_mini_boxes(contour)
|
353 |
+
if sside < self.min_size:
|
354 |
+
continue
|
355 |
+
points = np.array(points)
|
356 |
+
if self.score_mode == "fast":
|
357 |
+
score = self.box_score_fast(pred, points.reshape(-1, 2))
|
358 |
+
else:
|
359 |
+
score = self.box_score_slow(pred, contour)
|
360 |
+
if self.box_thresh > score:
|
361 |
+
continue
|
362 |
+
|
363 |
+
box = self.unclip(points).reshape(-1, 1, 2)
|
364 |
+
box, sside = self.get_mini_boxes(box)
|
365 |
+
if sside < self.min_size + 2:
|
366 |
+
continue
|
367 |
+
box = np.array(box)
|
368 |
+
|
369 |
+
box[:, 0] = np.clip(
|
370 |
+
np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
371 |
+
box[:, 1] = np.clip(
|
372 |
+
np.round(box[:, 1] / height * dest_height), 0, dest_height)
|
373 |
+
boxes.append(box.astype(np.int16))
|
374 |
+
scores.append(score)
|
375 |
+
return np.array(boxes, dtype=np.int16), scores
|
376 |
+
|
377 |
+
def unclip(self, box):
|
378 |
+
unclip_ratio = self.unclip_ratio
|
379 |
+
poly = Polygon(box)
|
380 |
+
distance = poly.area * unclip_ratio / poly.length
|
381 |
+
offset = pyclipper.PyclipperOffset()
|
382 |
+
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
383 |
+
expanded = np.array(offset.Execute(distance))
|
384 |
+
return expanded
|
385 |
+
|
386 |
+
def get_mini_boxes(self, contour):
|
387 |
+
bounding_box = cv2.minAreaRect(contour)
|
388 |
+
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
|
389 |
+
|
390 |
+
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
|
391 |
+
if points[1][1] > points[0][1]:
|
392 |
+
index_1 = 0
|
393 |
+
index_4 = 1
|
394 |
+
else:
|
395 |
+
index_1 = 1
|
396 |
+
index_4 = 0
|
397 |
+
if points[3][1] > points[2][1]:
|
398 |
+
index_2 = 2
|
399 |
+
index_3 = 3
|
400 |
+
else:
|
401 |
+
index_2 = 3
|
402 |
+
index_3 = 2
|
403 |
+
|
404 |
+
box = [
|
405 |
+
points[index_1], points[index_2], points[index_3], points[index_4]
|
406 |
+
]
|
407 |
+
return box, min(bounding_box[1])
|
408 |
+
|
409 |
+
def box_score_fast(self, bitmap, _box):
|
410 |
+
h, w = bitmap.shape[:2]
|
411 |
+
box = _box.copy()
|
412 |
+
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1)
|
413 |
+
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1)
|
414 |
+
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1)
|
415 |
+
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1)
|
416 |
+
|
417 |
+
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
418 |
+
box[:, 0] = box[:, 0] - xmin
|
419 |
+
box[:, 1] = box[:, 1] - ymin
|
420 |
+
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
|
421 |
+
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
422 |
+
|
423 |
+
def box_score_slow(self, bitmap, contour):
|
424 |
+
'''
|
425 |
+
box_score_slow: use polyon mean score as the mean score
|
426 |
+
'''
|
427 |
+
h, w = bitmap.shape[:2]
|
428 |
+
contour = contour.copy()
|
429 |
+
contour = np.reshape(contour, (-1, 2))
|
430 |
+
|
431 |
+
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
|
432 |
+
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
|
433 |
+
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
|
434 |
+
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
|
435 |
+
|
436 |
+
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
437 |
+
|
438 |
+
contour[:, 0] = contour[:, 0] - xmin
|
439 |
+
contour[:, 1] = contour[:, 1] - ymin
|
440 |
+
|
441 |
+
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
|
442 |
+
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
443 |
+
|
444 |
+
def __call__(self, pred, shape_list):
|
445 |
+
pred = pred[:, 0, :, :]
|
446 |
+
segmentation = pred > self.thresh
|
447 |
+
|
448 |
+
boxes_batch = []
|
449 |
+
for batch_index in range(pred.shape[0]):
|
450 |
+
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
|
451 |
+
if self.dilation_kernel is not None:
|
452 |
+
mask = cv2.dilate(
|
453 |
+
np.array(segmentation[batch_index]).astype(np.uint8),
|
454 |
+
self.dilation_kernel)
|
455 |
+
else:
|
456 |
+
mask = segmentation[batch_index]
|
457 |
+
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
|
458 |
+
src_w, src_h)
|
459 |
+
|
460 |
+
boxes_batch.append({'points': boxes})
|
461 |
+
return boxes_batch
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.21.6
|
2 |
+
onnxruntime>=1.10.0
|
3 |
+
opencv_python
|
4 |
+
pyclipper>=1.2.1
|
5 |
+
Shapely
|
6 |
+
six
|