Spaces:
Running
Running
File size: 6,892 Bytes
5d6a0bb d80ba6a 5d6a0bb 00e3b6c 5d6a0bb d80ba6a 8095db7 d80ba6a 5d6a0bb 8095db7 5d6a0bb 8d6e841 c7b38e3 d80ba6a c7b38e3 8d6e841 5d6a0bb 9792e33 d80ba6a 8803a47 7e03ca9 d80ba6a 8d6e841 d80ba6a 8d6e841 d80ba6a 8803a47 7e03ca9 19a047e d80ba6a 00e3b6c d80ba6a 13281f5 8a89fa4 8095db7 d80ba6a d7642ea d80ba6a c8dccb3 d80ba6a 8095db7 d80ba6a 508fdf6 d80ba6a 5864c3b d80ba6a 72c4a21 d80ba6a adc39cc d80ba6a 8803a47 e42ad77 1aa38b6 e42ad77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# -*- encoding: utf-8 -*-
# @Author: SWHL
# @Contact: liekkaskono@163.com
import time
from pathlib import Path
import cv2
import numpy as np
import pandas as pd
import streamlit as st
from PIL import Image
from rapidocr_onnxruntime import RapidOCR, VisRes
from streamlit_image_select import image_select
vis = VisRes()
font_dict = {
"ch": "simfang.ttf",
"japan": "japan.ttc",
"korean": "korean.ttf",
"en": "simfang.ttf",
}
def init_sidebar():
st.session_state["params"] = {}
st.sidebar.markdown(
"### [🛠️ Parameter Settings](https://github.com/RapidAI/RapidOCR/wiki/config_parameter)"
)
box_thresh = st.sidebar.slider(
"box_thresh",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.1,
help="检测到的框是文本的概率,值越大,框中是文本的概率就越大。存在漏检时,调低该值。取值范围:[0, 1.0],默认值为0.5",
)
st.session_state["params"]["box_thresh"] = box_thresh
unclip_ratio = st.sidebar.slider(
"unclip_ratio",
min_value=1.5,
max_value=2.0,
value=1.6,
step=0.1,
help="控制文本检测框的大小,值越大,检测框整体越大。在出现框截断文字的情况,调大该值。取值范围:[1.5, 2.0],默认值为1.6",
)
st.session_state["params"]["unclip_ratio"] = unclip_ratio
text_score = st.sidebar.slider(
"text_score",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.1,
help="文本识别结果是正确的置信度,值越大,显示出的识别结果更准确。存在漏检时,调低该值。取值范围:[0, 1.0],默认值为0.5",
)
st.session_state["params"]["text_score"] = text_score
with st.sidebar.container():
img_path = image_select(
label="Examples(click to select):",
images=examples,
key="equation_default",
use_container_width=True,
)
img = cv2.imread(img_path)
st.session_state["img"] = img
def inference(
text_det=None,
text_rec=None,
):
img = st.session_state.get("img")
box_thresh = st.session_state["params"].get("box_thresh")
unclip_ratio = st.session_state["params"].get("unclip_ratio")
text_score = st.session_state["params"].get("text_score")
det_model_path = str(Path("models") / "text_det" / text_det)
rec_model_path = str(Path("models") / "text_rec" / text_rec)
if (
"v2" in rec_model_path
or "korean" in rec_model_path
or "japan" in rec_model_path
):
rec_image_shape = [3, 32, 320]
else:
rec_image_shape = [3, 48, 320]
rapid_ocr = RapidOCR(
det_model_path=det_model_path,
rec_model_path=rec_model_path,
rec_img_shape=rec_image_shape,
)
if "ch" in rec_model_path or "en" in rec_model_path:
lan_name = "ch"
elif "japan" in rec_model_path:
lan_name = "japan"
elif "korean" in rec_model_path:
lan_name = "korean"
else:
lan_name = "ch"
ocr_result, infer_elapse = rapid_ocr(
img, box_thresh=box_thresh, unclip_ratio=unclip_ratio, text_score=text_score
)
if not ocr_result or not infer_elapse:
return None, None, None
det_cost, cls_cost, rec_cost = infer_elapse
elapse = f"- `det cost`: {det_cost:.5f}\n - `cls cost`: {cls_cost:.5f}\n - `rec cost`: {rec_cost:.5f}"
dt_boxes, rec_res, scores = list(zip(*ocr_result))
font_path = Path("fonts") / font_dict.get(lan_name)
print(font_path)
vis_img = vis(img, dt_boxes, rec_res, scores, font_path=str(font_path))
vis_img = vis_img[..., ::-1]
out_df = pd.DataFrame(
[[rec, score] for rec, score in zip(rec_res, scores)],
columns=("Rec", "Score"),
)
return vis_img, out_df, elapse
def tips(txt: str, wait_time: int = 2, icon: str = "🎉"):
st.toast(txt, icon=icon)
time.sleep(wait_time)
if __name__ == "__main__":
st.markdown(
"<h1 style='text-align: center;'><a href='https://github.com/RapidAI/RapidOCR' style='text-decoration: none'>Rapid⚡OCR</a></h1>",
unsafe_allow_html=True,
)
st.markdown(
"""
<p align="center">
<a href=""><img src="https://img.shields.io/badge/Python->=3.6,<3.13-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Win%2C%20Mac-pink.svg"></a>
<a href="https://pepy.tech/project/rapidocr_onnxruntime"><img src="https://static.pepy.tech/personalized-badge/rapidocr_onnxruntime?period=total&units=abbreviation&left_color=grey&right_color=blue&left_text=Downloads%20Ort"></a>
<a href="https://pypi.org/project/rapidocr-onnxruntime/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rapidocr-onnxruntime"></a>
</p>
""",
unsafe_allow_html=True,
)
examples = [
"images/1.jpg",
"images/ch_en_num.jpg",
"images/air_ticket.jpg",
"images/car_plate.jpeg",
"images/train_ticket.jpeg",
"images/japan_2.jpg",
# "images/korean_1.jpg",
]
init_sidebar()
menu_det, menu_rec = st.columns([1, 1])
det_models = [
"ch_PP-OCRv4_det_infer.onnx",
"ch_PP-OCRv3_det_infer.onnx",
"ch_PP-OCRv2_det_infer.onnx",
"ch_ppocr_server_v2.0_det_infer.onnx",
"ch_PP-OCRv4_det_server_infer.onnx",
]
select_det = menu_det.selectbox("Det model:", det_models)
rec_models = [
"ch_PP-OCRv4_rec_infer.onnx",
"ch_PP-OCRv3_rec_infer.onnx",
"ch_PP-OCRv2_rec_infer.onnx",
"ch_ppocr_server_v2.0_rec_infer.onnx",
"en_PP-OCRv3_rec_infer.onnx",
"en_number_mobile_v2.0_rec_infer.onnx",
# "korean_mobile_v2.0_rec_infer.onnx",
"japan_rec_crnn_v2.onnx",
]
select_rec = menu_rec.selectbox("Rec model:", rec_models)
with st.form("my-form", clear_on_submit=True):
img_file_buffer = st.file_uploader(
"Upload an image",
accept_multiple_files=False,
label_visibility="visible",
type=["png", "jpg", "jpeg", "bmp"],
)
submit = st.form_submit_button("Upload")
if submit and img_file_buffer is not None:
image = Image.open(img_file_buffer)
img = np.array(image)
st.session_state["img"] = img
if st.session_state["img"] is not None:
out_img, out_json, elapse = inference(select_det, select_rec)
if all(v is not None for v in [out_img, out_json, elapse]):
st.markdown("#### Visualize:")
st.image(out_img)
st.markdown("### Rec Result:")
st.markdown(elapse)
st.dataframe(out_json, use_container_width=True)
else:
tips("识别结果为空", wait_time=5, icon="⚠️")
|