Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
import tensorflow_addons as tfa | |
import os | |
import numpy as np | |
# labels= {'Burger King': 0, 'KFC': 1,'McDonalds': 2,'Other': 3,'Starbucks': 4,'Subway': 5} | |
HEIGHT,WIDTH=224,224 | |
NUM_CLASSES=6 | |
model=load_model('best_model2.h5') | |
# def classify_image(inp): | |
# np.random.seed(143) | |
# inp = inp.reshape((-1, HEIGHT,WIDTH, 3)) | |
# inp = tf.keras.applications.nasnet.preprocess_input(inp) | |
# prediction = model.predict(inp) | |
# ###label = dict((v,k) for k,v in labels.items()) | |
# predicted_class_indices=np.argmax(prediction,axis=1) | |
# result = {} | |
# for i in range(len(predicted_class_indices)): | |
# if predicted_class_indices[i] < NUM_CLASSES: | |
# result[labels[predicted_class_indices[i]]]= float(predicted_class_indices[i]) | |
# return result | |
def classify_image(inp): | |
np.random.seed(143) | |
labels = {'Burger King': 1, 'KFC': 0, 'McDonalds': 2, 'Other': 3, 'Starbucks': 4, 'Subway': 5} | |
NUM_CLASSES = 6 | |
inp = inp.reshape((-1, HEIGHT, WIDTH, 3)) | |
inp = tf.keras.applications.nasnet.preprocess_input(inp) | |
prediction = model.predict(inp) | |
predicted_class_indices = np.argmax(prediction, axis=1) | |
label_order = ["Burger King", "KFC", "McDonalds", "Other", "Starbucks", "Subway"] | |
result = {label: float(f"{prediction[0][labels[label]]:.6f}") for label in label_order} | |
return result | |
image = gr.Image(shape=(HEIGHT,WIDTH),label='Input') | |
label = gr.Label(num_top_classes=4) | |
gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Brand Logo Detection').launch(debug=False) | |