# DOGS VS CATS DATASET PREDICTION ## LOADING MODULES # Commented out IPython magic to ensure Python compatibility. # %%capture # !pip install tensorflow-addons # !pip install gradio import tensorflow_addons as tfa import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.models import load_model #from google_drive_downloader import GoogleDriveDownloader as gdd # from tensorflow.keras import * # import tensorflow_datasets as tfds # import matplotlib.pyplot as plt # import time """##LOADING SAVED MODEL""" model1='1TNF6uZBvcIfEUwzIR8t4L1kuImxb6PES' model2='1cK1cIYdczAoEPkiNZUqx2r1UqF2idcay' model3='1ldVcjryLk-YFfLRyNYdut5WeLLNxJ8ab' model = model1 #@param ["model1", "model2","model3"] {type:"raw"} PATH='best_model.h5' #getData(flid=model,path=PATH) # For example images # gdd.download_file_from_google_drive(file_id='1LdB6ZE9vxPi4HNN2emqJSoP0ig9DiG10', # dest_path='/content/examples.zip', # unzip=True) model=load_model(PATH) # model=load_model("/content/saved_model/content/saved/saved_model") labels=['Cat','Dog'] NUM_CLASSES=2 IMG_SIZE=224 ex=[['cat2.jpg'], ['dog2.jpeg'], ['cat3.jpg'], ['dog.jpeg']] """ ## RUNNING WEB UI""" def classify_image(inp): inp = inp.reshape((-1, IMG_SIZE, IMG_SIZE, 3)) inp = tf.keras.applications.vgg16.preprocess_input(inp) prediction = model.predict(inp).flatten() return {labels[i]: float(prediction[i]) for i in range(NUM_CLASSES)} image = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE)) label = gr.outputs.Label(num_top_classes=2) gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Cats Vs Dogs',height=600, width=1200,examples=ex,theme='peach').launch(debug=True)