Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
-
# import os
|
6 |
import tensorflow_hub as hub
|
7 |
import PIL
|
8 |
from PIL import Image,ImageOps
|
@@ -38,25 +37,9 @@ def tensor_to_image(tensor):
|
|
38 |
tensor = tensor[0]
|
39 |
return PIL.Image.fromarray(tensor)
|
40 |
|
41 |
-
"""##Saving unscaled Tensor images."""
|
42 |
-
|
43 |
-
def save_image(image, filename):
|
44 |
-
"""
|
45 |
-
Saves unscaled Tensor Images.
|
46 |
-
Args:
|
47 |
-
image: 3D image tensor. [height, width, channels]
|
48 |
-
filename: Name of the file to save to.
|
49 |
-
"""
|
50 |
-
if not isinstance(image, Image.Image):
|
51 |
-
image = tf.clip_by_value(image, 0, 255)
|
52 |
-
image = Image.fromarray(tf.cast(image, tf.uint8).numpy())
|
53 |
-
image.save("%s.jpg" % filename)
|
54 |
-
print("Saved as %s.jpg" % filename)
|
55 |
-
|
56 |
-
"""## Grayscaling image for testing purpose to check if we could get better results."""
|
57 |
-
|
58 |
|
59 |
|
|
|
60 |
def gray_scaled(inp_img):
|
61 |
gray = cv2.cvtColor(inp_img, cv2.COLOR_BGR2GRAY)
|
62 |
gray_img = np.zeros_like(inp_img)
|
@@ -65,6 +48,7 @@ def gray_scaled(inp_img):
|
|
65 |
gray_img[:,:,2] = gray
|
66 |
return gray_img
|
67 |
|
|
|
68 |
def transform_mymodel(content_image,style_image):
|
69 |
# Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]
|
70 |
#content_image=gray_scaled(content_image)
|
@@ -86,8 +70,8 @@ def gradio_intrface(mymodel):
|
|
86 |
# Initializing the input component
|
87 |
image1 = gr.inputs.Image(label="Content Image") #CONTENT IMAGE
|
88 |
image2 = gr.inputs.Image(label="Style Image") #STYLE IMAGE
|
89 |
-
stylizedimg=gr.outputs.Image()
|
90 |
-
gr.Interface(fn=mymodel, inputs= [image1,image2] , outputs= stylizedimg,title='Style Transfer',theme='seafoam',examples=[['Content_Images/contnt12.jpg','VG516.jpg']],article="
|
91 |
|
92 |
"""The function will be launched both Inline and Outline where u need to add a content and style image."""
|
93 |
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
|
|
5 |
import tensorflow_hub as hub
|
6 |
import PIL
|
7 |
from PIL import Image,ImageOps
|
|
|
37 |
tensor = tensor[0]
|
38 |
return PIL.Image.fromarray(tensor)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
+
"""## Grayscaling image for testing purpose to check if we could get better results."""
|
43 |
def gray_scaled(inp_img):
|
44 |
gray = cv2.cvtColor(inp_img, cv2.COLOR_BGR2GRAY)
|
45 |
gray_img = np.zeros_like(inp_img)
|
|
|
48 |
gray_img[:,:,2] = gray
|
49 |
return gray_img
|
50 |
|
51 |
+
##Transformation
|
52 |
def transform_mymodel(content_image,style_image):
|
53 |
# Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]
|
54 |
#content_image=gray_scaled(content_image)
|
|
|
70 |
# Initializing the input component
|
71 |
image1 = gr.inputs.Image(label="Content Image") #CONTENT IMAGE
|
72 |
image2 = gr.inputs.Image(label="Style Image") #STYLE IMAGE
|
73 |
+
stylizedimg=gr.outputs.Image(label="Result")
|
74 |
+
gr.Interface(fn=mymodel, inputs= [image1,image2] , outputs= stylizedimg,title='Style Transfer',theme='seafoam',examples=[['Content_Images/contnt12.jpg','VG516.jpg']],article="References-\n\n""<a href='https://www.tensorflow.org/hub/tutorials/tf2_arbitrary_image_stylization'>\n").launch()
|
75 |
|
76 |
"""The function will be launched both Inline and Outline where u need to add a content and style image."""
|
77 |
|