Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,7 @@ import numpy as np
|
|
18 |
#import requests
|
19 |
#import tarfile
|
20 |
|
21 |
-
MODEL_PATH='Nst_model'
|
22 |
|
23 |
# Disable scientific notation for clarity
|
24 |
np.set_printoptions(suppress=True)
|
@@ -39,7 +39,7 @@ def tensor_to_image(tensor):
|
|
39 |
|
40 |
|
41 |
|
42 |
-
"""## Grayscaling image for testing purpose to check if we could get better results.
|
43 |
def gray_scaled(inp_img):
|
44 |
gray = cv2.cvtColor(inp_img, cv2.COLOR_BGR2GRAY)
|
45 |
gray_img = np.zeros_like(inp_img)
|
@@ -47,13 +47,14 @@ def gray_scaled(inp_img):
|
|
47 |
gray_img[:,:,1] = gray
|
48 |
gray_img[:,:,2] = gray
|
49 |
return gray_img
|
|
|
50 |
|
51 |
##Transformation
|
52 |
-
def
|
53 |
# Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]
|
54 |
#content_image=gray_scaled(content_image)
|
55 |
-
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
|
56 |
-
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
|
57 |
|
58 |
#Resizing image
|
59 |
#style_image = tf.image.resize(style_image, (256, 256))
|
@@ -66,17 +67,11 @@ def transform_mymodel(content_image,style_image):
|
|
66 |
stylized_image =tensor_to_image(stylized_image)
|
67 |
return stylized_image
|
68 |
|
69 |
-
def gradio_intrface(mymodel):
|
70 |
-
# Initializing the input component
|
71 |
-
image1 = gr.inputs.Image(label="Content Image") #CONTENT IMAGE
|
72 |
-
image2 = gr.inputs.Image(label="Style Image") #STYLE IMAGE
|
73 |
-
stylizedimg=gr.outputs.Image(label="Result")
|
74 |
-
gr.Interface(fn=mymodel, inputs= [image1,image2] , outputs= stylizedimg,title='Style Transfer',theme='seafoam',examples=[['Content_Images/contnt12.jpg','VG516.jpg']],article="References-\n\nExploring the structure of a real-time, arbitrary neural artistic stylization network. Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin.").launch()
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
|
82 |
|
|
|
18 |
#import requests
|
19 |
#import tarfile
|
20 |
|
21 |
+
#MODEL_PATH='Nst_model'
|
22 |
|
23 |
# Disable scientific notation for clarity
|
24 |
np.set_printoptions(suppress=True)
|
|
|
39 |
|
40 |
|
41 |
|
42 |
+
"""## Grayscaling image for testing purpose to check if we could get better results.
|
43 |
def gray_scaled(inp_img):
|
44 |
gray = cv2.cvtColor(inp_img, cv2.COLOR_BGR2GRAY)
|
45 |
gray_img = np.zeros_like(inp_img)
|
|
|
47 |
gray_img[:,:,1] = gray
|
48 |
gray_img[:,:,2] = gray
|
49 |
return gray_img
|
50 |
+
"""
|
51 |
|
52 |
##Transformation
|
53 |
+
def transform_my_model(content_image,style_image):
|
54 |
# Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]
|
55 |
#content_image=gray_scaled(content_image)
|
56 |
+
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
|
57 |
+
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
|
58 |
|
59 |
#Resizing image
|
60 |
#style_image = tf.image.resize(style_image, (256, 256))
|
|
|
67 |
stylized_image =tensor_to_image(stylized_image)
|
68 |
return stylized_image
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
image1 = gr.inputs.Image(label="Content Image") #CONTENT IMAGE
|
72 |
+
image2 = gr.inputs.Image(label="Style Image") #STYLE IMAGE
|
73 |
+
stylizedimg=gr.outputs.Image(label="Result")
|
74 |
+
gr.Interface(fn=transform_my_model, inputs= [image1,image2] , outputs= stylizedimg,title='Style Transfer',theme='seafoam',examples=[['Content_Images/contnt12.jpg','VG516.jpg']],article="References-\n\nExploring the structure of a real-time, arbitrary neural artistic stylization network. Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin.").launch()
|
75 |
|
76 |
|
77 |
|