'''NEURAL STYLE TRANSFER ''' import gradio as gr import tensorflow as tf import tensorflow_hub as hub import PIL from PIL import Image import numpy as np # import time # import requests #import cv2 # !mkdir nstmodel # !wget -c https://storage.googleapis.com/tfhub-modules/google/magenta/arbitrary-image-stylization-v1-256/2.tar.gz -O - | tar -xz -C /nstmodel # import tensorflow.keras # from PIL import Image, ImageOps #import requests #import tarfile #MODEL_PATH='Nst_model' # Disable scientific notation for clarity np.set_printoptions(suppress=True) # Load model from TF-Hub model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') # Load the model #model = tf.keras.models.load_model(MODEL_PATH) def tensor_to_image(tensor): tensor = tensor*255 tensor = np.array(tensor, dtype=np.uint8) if np.ndim(tensor)>3: assert tensor.shape[0] == 1 tensor = tensor[0] return PIL.Image.fromarray(tensor) """## Grayscaling image for testing purpose to check if we could get better results. def gray_scaled(inp_img): gray = cv2.cvtColor(inp_img, cv2.COLOR_BGR2GRAY) gray_img = np.zeros_like(inp_img) gray_img[:,:,0] = gray gray_img[:,:,1] = gray gray_img[:,:,2] = gray return gray_img """ ##Transformation def transform_my_model(content_image,style_image): # Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1] #content_image=gray_scaled(content_image) content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255. style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255. #Resizing image #style_image = tf.image.resize(style_image, (256, 256)) # Stylize image outputs = model(tf.constant(content_image), tf.constant(style_image)) stylized_image = outputs[0] # stylized = tf.image.resize(stylized_image, (356, 356)) stylized_image =tensor_to_image(stylized_image) return stylized_image image1 = gr.Image(label="Content Image") #CONTENT IMAGE image2 = gr.Image(label="Style Image") #STYLE IMAGE stylizedimg=gr.Image(label="Result") gr.Interface(fn=transform_my_model, inputs= [image1,image2] , outputs= stylizedimg,title='Style Transfer',theme='seafoam',examples=[['Content_Images/contnt12.jpg','VG516.jpg']],article="References-\n\nExploring the structure of a real-time, arbitrary neural artistic stylization network. Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin.").launch(debug=True)