Sa-m commited on
Commit
86212c1
1 Parent(s): e250ffd

Delete models/common.py

Browse files
Files changed (1) hide show
  1. models/common.py +0 -2019
models/common.py DELETED
@@ -1,2019 +0,0 @@
1
- import math
2
- from copy import copy
3
- from pathlib import Path
4
-
5
- import numpy as np
6
- import pandas as pd
7
- import requests
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- from torchvision.ops import DeformConv2d
12
- from PIL import Image
13
- from torch.cuda import amp
14
-
15
- from utils.datasets import letterbox
16
- from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh
17
- from utils.plots import color_list, plot_one_box
18
- from utils.torch_utils import time_synchronized
19
-
20
-
21
- ##### basic ####
22
-
23
- def autopad(k, p=None): # kernel, padding
24
- # Pad to 'same'
25
- if p is None:
26
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
27
- return p
28
-
29
-
30
- class MP(nn.Module):
31
- def __init__(self, k=2):
32
- super(MP, self).__init__()
33
- self.m = nn.MaxPool2d(kernel_size=k, stride=k)
34
-
35
- def forward(self, x):
36
- return self.m(x)
37
-
38
-
39
- class SP(nn.Module):
40
- def __init__(self, k=3, s=1):
41
- super(SP, self).__init__()
42
- self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
43
-
44
- def forward(self, x):
45
- return self.m(x)
46
-
47
-
48
- class ReOrg(nn.Module):
49
- def __init__(self):
50
- super(ReOrg, self).__init__()
51
-
52
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
53
- return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
54
-
55
-
56
- class Concat(nn.Module):
57
- def __init__(self, dimension=1):
58
- super(Concat, self).__init__()
59
- self.d = dimension
60
-
61
- def forward(self, x):
62
- return torch.cat(x, self.d)
63
-
64
-
65
- class Chuncat(nn.Module):
66
- def __init__(self, dimension=1):
67
- super(Chuncat, self).__init__()
68
- self.d = dimension
69
-
70
- def forward(self, x):
71
- x1 = []
72
- x2 = []
73
- for xi in x:
74
- xi1, xi2 = xi.chunk(2, self.d)
75
- x1.append(xi1)
76
- x2.append(xi2)
77
- return torch.cat(x1+x2, self.d)
78
-
79
-
80
- class Shortcut(nn.Module):
81
- def __init__(self, dimension=0):
82
- super(Shortcut, self).__init__()
83
- self.d = dimension
84
-
85
- def forward(self, x):
86
- return x[0]+x[1]
87
-
88
-
89
- class Foldcut(nn.Module):
90
- def __init__(self, dimension=0):
91
- super(Foldcut, self).__init__()
92
- self.d = dimension
93
-
94
- def forward(self, x):
95
- x1, x2 = x.chunk(2, self.d)
96
- return x1+x2
97
-
98
-
99
- class Conv(nn.Module):
100
- # Standard convolution
101
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
102
- super(Conv, self).__init__()
103
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
104
- self.bn = nn.BatchNorm2d(c2)
105
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
106
-
107
- def forward(self, x):
108
- return self.act(self.bn(self.conv(x)))
109
-
110
- def fuseforward(self, x):
111
- return self.act(self.conv(x))
112
-
113
-
114
- class RobustConv(nn.Module):
115
- # Robust convolution (use high kernel size 7-11 for: downsampling and other layers). Train for 300 - 450 epochs.
116
- def __init__(self, c1, c2, k=7, s=1, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
117
- super(RobustConv, self).__init__()
118
- self.conv_dw = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
119
- self.conv1x1 = nn.Conv2d(c1, c2, 1, 1, 0, groups=1, bias=True)
120
- self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
121
-
122
- def forward(self, x):
123
- x = x.to(memory_format=torch.channels_last)
124
- x = self.conv1x1(self.conv_dw(x))
125
- if self.gamma is not None:
126
- x = x.mul(self.gamma.reshape(1, -1, 1, 1))
127
- return x
128
-
129
-
130
- class RobustConv2(nn.Module):
131
- # Robust convolution 2 (use [32, 5, 2] or [32, 7, 4] or [32, 11, 8] for one of the paths in CSP).
132
- def __init__(self, c1, c2, k=7, s=4, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
133
- super(RobustConv2, self).__init__()
134
- self.conv_strided = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
135
- self.conv_deconv = nn.ConvTranspose2d(in_channels=c1, out_channels=c2, kernel_size=s, stride=s,
136
- padding=0, bias=True, dilation=1, groups=1
137
- )
138
- self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
139
-
140
- def forward(self, x):
141
- x = self.conv_deconv(self.conv_strided(x))
142
- if self.gamma is not None:
143
- x = x.mul(self.gamma.reshape(1, -1, 1, 1))
144
- return x
145
-
146
-
147
- def DWConv(c1, c2, k=1, s=1, act=True):
148
- # Depthwise convolution
149
- return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
150
-
151
-
152
- class GhostConv(nn.Module):
153
- # Ghost Convolution https://github.com/huawei-noah/ghostnet
154
- def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
155
- super(GhostConv, self).__init__()
156
- c_ = c2 // 2 # hidden channels
157
- self.cv1 = Conv(c1, c_, k, s, None, g, act)
158
- self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
159
-
160
- def forward(self, x):
161
- y = self.cv1(x)
162
- return torch.cat([y, self.cv2(y)], 1)
163
-
164
-
165
- class Stem(nn.Module):
166
- # Stem
167
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
168
- super(Stem, self).__init__()
169
- c_ = int(c2/2) # hidden channels
170
- self.cv1 = Conv(c1, c_, 3, 2)
171
- self.cv2 = Conv(c_, c_, 1, 1)
172
- self.cv3 = Conv(c_, c_, 3, 2)
173
- self.pool = torch.nn.MaxPool2d(2, stride=2)
174
- self.cv4 = Conv(2 * c_, c2, 1, 1)
175
-
176
- def forward(self, x):
177
- x = self.cv1(x)
178
- return self.cv4(torch.cat((self.cv3(self.cv2(x)), self.pool(x)), dim=1))
179
-
180
-
181
- class DownC(nn.Module):
182
- # Spatial pyramid pooling layer used in YOLOv3-SPP
183
- def __init__(self, c1, c2, n=1, k=2):
184
- super(DownC, self).__init__()
185
- c_ = int(c1) # hidden channels
186
- self.cv1 = Conv(c1, c_, 1, 1)
187
- self.cv2 = Conv(c_, c2//2, 3, k)
188
- self.cv3 = Conv(c1, c2//2, 1, 1)
189
- self.mp = nn.MaxPool2d(kernel_size=k, stride=k)
190
-
191
- def forward(self, x):
192
- return torch.cat((self.cv2(self.cv1(x)), self.cv3(self.mp(x))), dim=1)
193
-
194
-
195
- class SPP(nn.Module):
196
- # Spatial pyramid pooling layer used in YOLOv3-SPP
197
- def __init__(self, c1, c2, k=(5, 9, 13)):
198
- super(SPP, self).__init__()
199
- c_ = c1 // 2 # hidden channels
200
- self.cv1 = Conv(c1, c_, 1, 1)
201
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
202
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
203
-
204
- def forward(self, x):
205
- x = self.cv1(x)
206
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
207
-
208
-
209
- class Bottleneck(nn.Module):
210
- # Darknet bottleneck
211
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
212
- super(Bottleneck, self).__init__()
213
- c_ = int(c2 * e) # hidden channels
214
- self.cv1 = Conv(c1, c_, 1, 1)
215
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
216
- self.add = shortcut and c1 == c2
217
-
218
- def forward(self, x):
219
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
220
-
221
-
222
- class Res(nn.Module):
223
- # ResNet bottleneck
224
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
225
- super(Res, self).__init__()
226
- c_ = int(c2 * e) # hidden channels
227
- self.cv1 = Conv(c1, c_, 1, 1)
228
- self.cv2 = Conv(c_, c_, 3, 1, g=g)
229
- self.cv3 = Conv(c_, c2, 1, 1)
230
- self.add = shortcut and c1 == c2
231
-
232
- def forward(self, x):
233
- return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
234
-
235
-
236
- class ResX(Res):
237
- # ResNet bottleneck
238
- def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
239
- super().__init__(c1, c2, shortcut, g, e)
240
- c_ = int(c2 * e) # hidden channels
241
-
242
-
243
- class Ghost(nn.Module):
244
- # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
245
- def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
246
- super(Ghost, self).__init__()
247
- c_ = c2 // 2
248
- self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
249
- DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
250
- GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
251
- self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
252
- Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
253
-
254
- def forward(self, x):
255
- return self.conv(x) + self.shortcut(x)
256
-
257
- ##### end of basic #####
258
-
259
-
260
- ##### cspnet #####
261
-
262
- class SPPCSPC(nn.Module):
263
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
264
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
265
- super(SPPCSPC, self).__init__()
266
- c_ = int(2 * c2 * e) # hidden channels
267
- self.cv1 = Conv(c1, c_, 1, 1)
268
- self.cv2 = Conv(c1, c_, 1, 1)
269
- self.cv3 = Conv(c_, c_, 3, 1)
270
- self.cv4 = Conv(c_, c_, 1, 1)
271
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
272
- self.cv5 = Conv(4 * c_, c_, 1, 1)
273
- self.cv6 = Conv(c_, c_, 3, 1)
274
- self.cv7 = Conv(2 * c_, c2, 1, 1)
275
-
276
- def forward(self, x):
277
- x1 = self.cv4(self.cv3(self.cv1(x)))
278
- y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
279
- y2 = self.cv2(x)
280
- return self.cv7(torch.cat((y1, y2), dim=1))
281
-
282
- class GhostSPPCSPC(SPPCSPC):
283
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
284
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
285
- super().__init__(c1, c2, n, shortcut, g, e, k)
286
- c_ = int(2 * c2 * e) # hidden channels
287
- self.cv1 = GhostConv(c1, c_, 1, 1)
288
- self.cv2 = GhostConv(c1, c_, 1, 1)
289
- self.cv3 = GhostConv(c_, c_, 3, 1)
290
- self.cv4 = GhostConv(c_, c_, 1, 1)
291
- self.cv5 = GhostConv(4 * c_, c_, 1, 1)
292
- self.cv6 = GhostConv(c_, c_, 3, 1)
293
- self.cv7 = GhostConv(2 * c_, c2, 1, 1)
294
-
295
-
296
- class GhostStem(Stem):
297
- # Stem
298
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
299
- super().__init__(c1, c2, k, s, p, g, act)
300
- c_ = int(c2/2) # hidden channels
301
- self.cv1 = GhostConv(c1, c_, 3, 2)
302
- self.cv2 = GhostConv(c_, c_, 1, 1)
303
- self.cv3 = GhostConv(c_, c_, 3, 2)
304
- self.cv4 = GhostConv(2 * c_, c2, 1, 1)
305
-
306
-
307
- class BottleneckCSPA(nn.Module):
308
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
309
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
310
- super(BottleneckCSPA, self).__init__()
311
- c_ = int(c2 * e) # hidden channels
312
- self.cv1 = Conv(c1, c_, 1, 1)
313
- self.cv2 = Conv(c1, c_, 1, 1)
314
- self.cv3 = Conv(2 * c_, c2, 1, 1)
315
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
316
-
317
- def forward(self, x):
318
- y1 = self.m(self.cv1(x))
319
- y2 = self.cv2(x)
320
- return self.cv3(torch.cat((y1, y2), dim=1))
321
-
322
-
323
- class BottleneckCSPB(nn.Module):
324
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
325
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
326
- super(BottleneckCSPB, self).__init__()
327
- c_ = int(c2) # hidden channels
328
- self.cv1 = Conv(c1, c_, 1, 1)
329
- self.cv2 = Conv(c_, c_, 1, 1)
330
- self.cv3 = Conv(2 * c_, c2, 1, 1)
331
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
332
-
333
- def forward(self, x):
334
- x1 = self.cv1(x)
335
- y1 = self.m(x1)
336
- y2 = self.cv2(x1)
337
- return self.cv3(torch.cat((y1, y2), dim=1))
338
-
339
-
340
- class BottleneckCSPC(nn.Module):
341
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
342
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
343
- super(BottleneckCSPC, self).__init__()
344
- c_ = int(c2 * e) # hidden channels
345
- self.cv1 = Conv(c1, c_, 1, 1)
346
- self.cv2 = Conv(c1, c_, 1, 1)
347
- self.cv3 = Conv(c_, c_, 1, 1)
348
- self.cv4 = Conv(2 * c_, c2, 1, 1)
349
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
350
-
351
- def forward(self, x):
352
- y1 = self.cv3(self.m(self.cv1(x)))
353
- y2 = self.cv2(x)
354
- return self.cv4(torch.cat((y1, y2), dim=1))
355
-
356
-
357
- class ResCSPA(BottleneckCSPA):
358
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
359
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
360
- super().__init__(c1, c2, n, shortcut, g, e)
361
- c_ = int(c2 * e) # hidden channels
362
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
363
-
364
-
365
- class ResCSPB(BottleneckCSPB):
366
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
367
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
368
- super().__init__(c1, c2, n, shortcut, g, e)
369
- c_ = int(c2) # hidden channels
370
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
371
-
372
-
373
- class ResCSPC(BottleneckCSPC):
374
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
375
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
376
- super().__init__(c1, c2, n, shortcut, g, e)
377
- c_ = int(c2 * e) # hidden channels
378
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
379
-
380
-
381
- class ResXCSPA(ResCSPA):
382
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
383
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
384
- super().__init__(c1, c2, n, shortcut, g, e)
385
- c_ = int(c2 * e) # hidden channels
386
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
387
-
388
-
389
- class ResXCSPB(ResCSPB):
390
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
391
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
392
- super().__init__(c1, c2, n, shortcut, g, e)
393
- c_ = int(c2) # hidden channels
394
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
395
-
396
-
397
- class ResXCSPC(ResCSPC):
398
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
399
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
400
- super().__init__(c1, c2, n, shortcut, g, e)
401
- c_ = int(c2 * e) # hidden channels
402
- self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
403
-
404
-
405
- class GhostCSPA(BottleneckCSPA):
406
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
407
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
408
- super().__init__(c1, c2, n, shortcut, g, e)
409
- c_ = int(c2 * e) # hidden channels
410
- self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
411
-
412
-
413
- class GhostCSPB(BottleneckCSPB):
414
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
415
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
416
- super().__init__(c1, c2, n, shortcut, g, e)
417
- c_ = int(c2) # hidden channels
418
- self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
419
-
420
-
421
- class GhostCSPC(BottleneckCSPC):
422
- # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
423
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
424
- super().__init__(c1, c2, n, shortcut, g, e)
425
- c_ = int(c2 * e) # hidden channels
426
- self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
427
-
428
- ##### end of cspnet #####
429
-
430
-
431
- ##### yolor #####
432
-
433
- class ImplicitA(nn.Module):
434
- def __init__(self, channel, mean=0., std=.02):
435
- super(ImplicitA, self).__init__()
436
- self.channel = channel
437
- self.mean = mean
438
- self.std = std
439
- self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
440
- nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
441
-
442
- def forward(self, x):
443
- return self.implicit + x
444
-
445
-
446
- class ImplicitM(nn.Module):
447
- def __init__(self, channel, mean=0., std=.02):
448
- super(ImplicitM, self).__init__()
449
- self.channel = channel
450
- self.mean = mean
451
- self.std = std
452
- self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
453
- nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
454
-
455
- def forward(self, x):
456
- return self.implicit * x
457
-
458
- ##### end of yolor #####
459
-
460
-
461
- ##### repvgg #####
462
-
463
- class RepConv(nn.Module):
464
- # Represented convolution
465
- # https://arxiv.org/abs/2101.03697
466
-
467
- def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):
468
- super(RepConv, self).__init__()
469
-
470
- self.deploy = deploy
471
- self.groups = g
472
- self.in_channels = c1
473
- self.out_channels = c2
474
-
475
- assert k == 3
476
- assert autopad(k, p) == 1
477
-
478
- padding_11 = autopad(k, p) - k // 2
479
-
480
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
481
-
482
- if deploy:
483
- self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)
484
-
485
- else:
486
- self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)
487
-
488
- self.rbr_dense = nn.Sequential(
489
- nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),
490
- nn.BatchNorm2d(num_features=c2),
491
- )
492
-
493
- self.rbr_1x1 = nn.Sequential(
494
- nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),
495
- nn.BatchNorm2d(num_features=c2),
496
- )
497
-
498
- def forward(self, inputs):
499
- if hasattr(self, "rbr_reparam"):
500
- return self.act(self.rbr_reparam(inputs))
501
-
502
- if self.rbr_identity is None:
503
- id_out = 0
504
- else:
505
- id_out = self.rbr_identity(inputs)
506
-
507
- return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
508
-
509
- def get_equivalent_kernel_bias(self):
510
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
511
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
512
- kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
513
- return (
514
- kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
515
- bias3x3 + bias1x1 + biasid,
516
- )
517
-
518
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
519
- if kernel1x1 is None:
520
- return 0
521
- else:
522
- return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
523
-
524
- def _fuse_bn_tensor(self, branch):
525
- if branch is None:
526
- return 0, 0
527
- if isinstance(branch, nn.Sequential):
528
- kernel = branch[0].weight
529
- running_mean = branch[1].running_mean
530
- running_var = branch[1].running_var
531
- gamma = branch[1].weight
532
- beta = branch[1].bias
533
- eps = branch[1].eps
534
- else:
535
- assert isinstance(branch, nn.BatchNorm2d)
536
- if not hasattr(self, "id_tensor"):
537
- input_dim = self.in_channels // self.groups
538
- kernel_value = np.zeros(
539
- (self.in_channels, input_dim, 3, 3), dtype=np.float32
540
- )
541
- for i in range(self.in_channels):
542
- kernel_value[i, i % input_dim, 1, 1] = 1
543
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
544
- kernel = self.id_tensor
545
- running_mean = branch.running_mean
546
- running_var = branch.running_var
547
- gamma = branch.weight
548
- beta = branch.bias
549
- eps = branch.eps
550
- std = (running_var + eps).sqrt()
551
- t = (gamma / std).reshape(-1, 1, 1, 1)
552
- return kernel * t, beta - running_mean * gamma / std
553
-
554
- def repvgg_convert(self):
555
- kernel, bias = self.get_equivalent_kernel_bias()
556
- return (
557
- kernel.detach().cpu().numpy(),
558
- bias.detach().cpu().numpy(),
559
- )
560
-
561
- def fuse_conv_bn(self, conv, bn):
562
-
563
- std = (bn.running_var + bn.eps).sqrt()
564
- bias = bn.bias - bn.running_mean * bn.weight / std
565
-
566
- t = (bn.weight / std).reshape(-1, 1, 1, 1)
567
- weights = conv.weight * t
568
-
569
- bn = nn.Identity()
570
- conv = nn.Conv2d(in_channels = conv.in_channels,
571
- out_channels = conv.out_channels,
572
- kernel_size = conv.kernel_size,
573
- stride=conv.stride,
574
- padding = conv.padding,
575
- dilation = conv.dilation,
576
- groups = conv.groups,
577
- bias = True,
578
- padding_mode = conv.padding_mode)
579
-
580
- conv.weight = torch.nn.Parameter(weights)
581
- conv.bias = torch.nn.Parameter(bias)
582
- return conv
583
-
584
- def fuse_repvgg_block(self):
585
- if self.deploy:
586
- return
587
- print(f"RepConv.fuse_repvgg_block")
588
-
589
- self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])
590
-
591
- self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
592
- rbr_1x1_bias = self.rbr_1x1.bias
593
- weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])
594
-
595
- # Fuse self.rbr_identity
596
- if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):
597
- # print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")
598
- identity_conv_1x1 = nn.Conv2d(
599
- in_channels=self.in_channels,
600
- out_channels=self.out_channels,
601
- kernel_size=1,
602
- stride=1,
603
- padding=0,
604
- groups=self.groups,
605
- bias=False)
606
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
607
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
608
- # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
609
- identity_conv_1x1.weight.data.fill_(0.0)
610
- identity_conv_1x1.weight.data.fill_diagonal_(1.0)
611
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
612
- # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
613
-
614
- identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
615
- bias_identity_expanded = identity_conv_1x1.bias
616
- weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])
617
- else:
618
- # print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")
619
- bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )
620
- weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )
621
-
622
-
623
- #print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")
624
- #print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")
625
- #print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")
626
-
627
- self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
628
- self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)
629
-
630
- self.rbr_reparam = self.rbr_dense
631
- self.deploy = True
632
-
633
- if self.rbr_identity is not None:
634
- del self.rbr_identity
635
- self.rbr_identity = None
636
-
637
- if self.rbr_1x1 is not None:
638
- del self.rbr_1x1
639
- self.rbr_1x1 = None
640
-
641
- if self.rbr_dense is not None:
642
- del self.rbr_dense
643
- self.rbr_dense = None
644
-
645
-
646
- class RepBottleneck(Bottleneck):
647
- # Standard bottleneck
648
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
649
- super().__init__(c1, c2, shortcut=True, g=1, e=0.5)
650
- c_ = int(c2 * e) # hidden channels
651
- self.cv2 = RepConv(c_, c2, 3, 1, g=g)
652
-
653
-
654
- class RepBottleneckCSPA(BottleneckCSPA):
655
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
656
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
657
- super().__init__(c1, c2, n, shortcut, g, e)
658
- c_ = int(c2 * e) # hidden channels
659
- self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
660
-
661
-
662
- class RepBottleneckCSPB(BottleneckCSPB):
663
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
664
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
665
- super().__init__(c1, c2, n, shortcut, g, e)
666
- c_ = int(c2) # hidden channels
667
- self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
668
-
669
-
670
- class RepBottleneckCSPC(BottleneckCSPC):
671
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
672
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
673
- super().__init__(c1, c2, n, shortcut, g, e)
674
- c_ = int(c2 * e) # hidden channels
675
- self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
676
-
677
-
678
- class RepRes(Res):
679
- # Standard bottleneck
680
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
681
- super().__init__(c1, c2, shortcut, g, e)
682
- c_ = int(c2 * e) # hidden channels
683
- self.cv2 = RepConv(c_, c_, 3, 1, g=g)
684
-
685
-
686
- class RepResCSPA(ResCSPA):
687
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
688
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
689
- super().__init__(c1, c2, n, shortcut, g, e)
690
- c_ = int(c2 * e) # hidden channels
691
- self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
692
-
693
-
694
- class RepResCSPB(ResCSPB):
695
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
696
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
697
- super().__init__(c1, c2, n, shortcut, g, e)
698
- c_ = int(c2) # hidden channels
699
- self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
700
-
701
-
702
- class RepResCSPC(ResCSPC):
703
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
704
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
705
- super().__init__(c1, c2, n, shortcut, g, e)
706
- c_ = int(c2 * e) # hidden channels
707
- self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
708
-
709
-
710
- class RepResX(ResX):
711
- # Standard bottleneck
712
- def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
713
- super().__init__(c1, c2, shortcut, g, e)
714
- c_ = int(c2 * e) # hidden channels
715
- self.cv2 = RepConv(c_, c_, 3, 1, g=g)
716
-
717
-
718
- class RepResXCSPA(ResXCSPA):
719
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
720
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
721
- super().__init__(c1, c2, n, shortcut, g, e)
722
- c_ = int(c2 * e) # hidden channels
723
- self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
724
-
725
-
726
- class RepResXCSPB(ResXCSPB):
727
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
728
- def __init__(self, c1, c2, n=1, shortcut=False, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
729
- super().__init__(c1, c2, n, shortcut, g, e)
730
- c_ = int(c2) # hidden channels
731
- self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
732
-
733
-
734
- class RepResXCSPC(ResXCSPC):
735
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
736
- def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
737
- super().__init__(c1, c2, n, shortcut, g, e)
738
- c_ = int(c2 * e) # hidden channels
739
- self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
740
-
741
- ##### end of repvgg #####
742
-
743
-
744
- ##### transformer #####
745
-
746
- class TransformerLayer(nn.Module):
747
- # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
748
- def __init__(self, c, num_heads):
749
- super().__init__()
750
- self.q = nn.Linear(c, c, bias=False)
751
- self.k = nn.Linear(c, c, bias=False)
752
- self.v = nn.Linear(c, c, bias=False)
753
- self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
754
- self.fc1 = nn.Linear(c, c, bias=False)
755
- self.fc2 = nn.Linear(c, c, bias=False)
756
-
757
- def forward(self, x):
758
- x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
759
- x = self.fc2(self.fc1(x)) + x
760
- return x
761
-
762
-
763
- class TransformerBlock(nn.Module):
764
- # Vision Transformer https://arxiv.org/abs/2010.11929
765
- def __init__(self, c1, c2, num_heads, num_layers):
766
- super().__init__()
767
- self.conv = None
768
- if c1 != c2:
769
- self.conv = Conv(c1, c2)
770
- self.linear = nn.Linear(c2, c2) # learnable position embedding
771
- self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
772
- self.c2 = c2
773
-
774
- def forward(self, x):
775
- if self.conv is not None:
776
- x = self.conv(x)
777
- b, _, w, h = x.shape
778
- p = x.flatten(2)
779
- p = p.unsqueeze(0)
780
- p = p.transpose(0, 3)
781
- p = p.squeeze(3)
782
- e = self.linear(p)
783
- x = p + e
784
-
785
- x = self.tr(x)
786
- x = x.unsqueeze(3)
787
- x = x.transpose(0, 3)
788
- x = x.reshape(b, self.c2, w, h)
789
- return x
790
-
791
- ##### end of transformer #####
792
-
793
-
794
- ##### yolov5 #####
795
-
796
- class Focus(nn.Module):
797
- # Focus wh information into c-space
798
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
799
- super(Focus, self).__init__()
800
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
801
- # self.contract = Contract(gain=2)
802
-
803
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
804
- return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
805
- # return self.conv(self.contract(x))
806
-
807
-
808
- class SPPF(nn.Module):
809
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
810
- def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
811
- super().__init__()
812
- c_ = c1 // 2 # hidden channels
813
- self.cv1 = Conv(c1, c_, 1, 1)
814
- self.cv2 = Conv(c_ * 4, c2, 1, 1)
815
- self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
816
-
817
- def forward(self, x):
818
- x = self.cv1(x)
819
- y1 = self.m(x)
820
- y2 = self.m(y1)
821
- return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
822
-
823
-
824
- class Contract(nn.Module):
825
- # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
826
- def __init__(self, gain=2):
827
- super().__init__()
828
- self.gain = gain
829
-
830
- def forward(self, x):
831
- N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
832
- s = self.gain
833
- x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
834
- x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
835
- return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
836
-
837
-
838
- class Expand(nn.Module):
839
- # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
840
- def __init__(self, gain=2):
841
- super().__init__()
842
- self.gain = gain
843
-
844
- def forward(self, x):
845
- N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
846
- s = self.gain
847
- x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
848
- x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
849
- return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
850
-
851
-
852
- class NMS(nn.Module):
853
- # Non-Maximum Suppression (NMS) module
854
- conf = 0.25 # confidence threshold
855
- iou = 0.45 # IoU threshold
856
- classes = None # (optional list) filter by class
857
-
858
- def __init__(self):
859
- super(NMS, self).__init__()
860
-
861
- def forward(self, x):
862
- return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
863
-
864
-
865
- class autoShape(nn.Module):
866
- # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
867
- conf = 0.25 # NMS confidence threshold
868
- iou = 0.45 # NMS IoU threshold
869
- classes = None # (optional list) filter by class
870
-
871
- def __init__(self, model):
872
- super(autoShape, self).__init__()
873
- self.model = model.eval()
874
-
875
- def autoshape(self):
876
- print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
877
- return self
878
-
879
- @torch.no_grad()
880
- def forward(self, imgs, size=640, augment=False, profile=False):
881
- # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
882
- # filename: imgs = 'data/samples/zidane.jpg'
883
- # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
884
- # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
885
- # PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
886
- # numpy: = np.zeros((640,1280,3)) # HWC
887
- # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
888
- # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
889
-
890
- t = [time_synchronized()]
891
- p = next(self.model.parameters()) # for device and type
892
- if isinstance(imgs, torch.Tensor): # torch
893
- with amp.autocast(enabled=p.device.type != 'cpu'):
894
- return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
895
-
896
- # Pre-process
897
- n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
898
- shape0, shape1, files = [], [], [] # image and inference shapes, filenames
899
- for i, im in enumerate(imgs):
900
- f = f'image{i}' # filename
901
- if isinstance(im, str): # filename or uri
902
- im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
903
- elif isinstance(im, Image.Image): # PIL Image
904
- im, f = np.asarray(im), getattr(im, 'filename', f) or f
905
- files.append(Path(f).with_suffix('.jpg').name)
906
- if im.shape[0] < 5: # image in CHW
907
- im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
908
- im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
909
- s = im.shape[:2] # HWC
910
- shape0.append(s) # image shape
911
- g = (size / max(s)) # gain
912
- shape1.append([y * g for y in s])
913
- imgs[i] = im # update
914
- shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
915
- x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
916
- x = np.stack(x, 0) if n > 1 else x[0][None] # stack
917
- x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
918
- x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
919
- t.append(time_synchronized())
920
-
921
- with amp.autocast(enabled=p.device.type != 'cpu'):
922
- # Inference
923
- y = self.model(x, augment, profile)[0] # forward
924
- t.append(time_synchronized())
925
-
926
- # Post-process
927
- y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
928
- for i in range(n):
929
- scale_coords(shape1, y[i][:, :4], shape0[i])
930
-
931
- t.append(time_synchronized())
932
- return Detections(imgs, y, files, t, self.names, x.shape)
933
-
934
-
935
- class Detections:
936
- # detections class for YOLOv5 inference results
937
- def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
938
- super(Detections, self).__init__()
939
- d = pred[0].device # device
940
- gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
941
- self.imgs = imgs # list of images as numpy arrays
942
- self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
943
- self.names = names # class names
944
- self.files = files # image filenames
945
- self.xyxy = pred # xyxy pixels
946
- self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
947
- self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
948
- self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
949
- self.n = len(self.pred) # number of images (batch size)
950
- self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
951
- self.s = shape # inference BCHW shape
952
-
953
- def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
954
- colors = color_list()
955
- for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
956
- str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
957
- if pred is not None:
958
- for c in pred[:, -1].unique():
959
- n = (pred[:, -1] == c).sum() # detections per class
960
- str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
961
- if show or save or render:
962
- for *box, conf, cls in pred: # xyxy, confidence, class
963
- label = f'{self.names[int(cls)]} {conf:.2f}'
964
- plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
965
- img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
966
- if pprint:
967
- print(str.rstrip(', '))
968
- if show:
969
- img.show(self.files[i]) # show
970
- if save:
971
- f = self.files[i]
972
- img.save(Path(save_dir) / f) # save
973
- print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
974
- if render:
975
- self.imgs[i] = np.asarray(img)
976
-
977
- def print(self):
978
- self.display(pprint=True) # print results
979
- print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
980
-
981
- def show(self):
982
- self.display(show=True) # show results
983
-
984
- def save(self, save_dir='runs/hub/exp'):
985
- save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir
986
- Path(save_dir).mkdir(parents=True, exist_ok=True)
987
- self.display(save=True, save_dir=save_dir) # save results
988
-
989
- def render(self):
990
- self.display(render=True) # render results
991
- return self.imgs
992
-
993
- def pandas(self):
994
- # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
995
- new = copy(self) # return copy
996
- ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
997
- cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
998
- for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
999
- a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
1000
- setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
1001
- return new
1002
-
1003
- def tolist(self):
1004
- # return a list of Detections objects, i.e. 'for result in results.tolist():'
1005
- x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
1006
- for d in x:
1007
- for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
1008
- setattr(d, k, getattr(d, k)[0]) # pop out of list
1009
- return x
1010
-
1011
- def __len__(self):
1012
- return self.n
1013
-
1014
-
1015
- class Classify(nn.Module):
1016
- # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
1017
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
1018
- super(Classify, self).__init__()
1019
- self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
1020
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
1021
- self.flat = nn.Flatten()
1022
-
1023
- def forward(self, x):
1024
- z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
1025
- return self.flat(self.conv(z)) # flatten to x(b,c2)
1026
-
1027
- ##### end of yolov5 ######
1028
-
1029
-
1030
- ##### orepa #####
1031
-
1032
- def transI_fusebn(kernel, bn):
1033
- gamma = bn.weight
1034
- std = (bn.running_var + bn.eps).sqrt()
1035
- return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std
1036
-
1037
-
1038
- class ConvBN(nn.Module):
1039
- def __init__(self, in_channels, out_channels, kernel_size,
1040
- stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
1041
- super().__init__()
1042
- if nonlinear is None:
1043
- self.nonlinear = nn.Identity()
1044
- else:
1045
- self.nonlinear = nonlinear
1046
- if deploy:
1047
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1048
- stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
1049
- else:
1050
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1051
- stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
1052
- self.bn = nn.BatchNorm2d(num_features=out_channels)
1053
-
1054
- def forward(self, x):
1055
- if hasattr(self, 'bn'):
1056
- return self.nonlinear(self.bn(self.conv(x)))
1057
- else:
1058
- return self.nonlinear(self.conv(x))
1059
-
1060
- def switch_to_deploy(self):
1061
- kernel, bias = transI_fusebn(self.conv.weight, self.bn)
1062
- conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
1063
- stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
1064
- conv.weight.data = kernel
1065
- conv.bias.data = bias
1066
- for para in self.parameters():
1067
- para.detach_()
1068
- self.__delattr__('conv')
1069
- self.__delattr__('bn')
1070
- self.conv = conv
1071
-
1072
- class OREPA_3x3_RepConv(nn.Module):
1073
-
1074
- def __init__(self, in_channels, out_channels, kernel_size,
1075
- stride=1, padding=0, dilation=1, groups=1,
1076
- internal_channels_1x1_3x3=None,
1077
- deploy=False, nonlinear=None, single_init=False):
1078
- super(OREPA_3x3_RepConv, self).__init__()
1079
- self.deploy = deploy
1080
-
1081
- if nonlinear is None:
1082
- self.nonlinear = nn.Identity()
1083
- else:
1084
- self.nonlinear = nonlinear
1085
-
1086
- self.kernel_size = kernel_size
1087
- self.in_channels = in_channels
1088
- self.out_channels = out_channels
1089
- self.groups = groups
1090
- assert padding == kernel_size // 2
1091
-
1092
- self.stride = stride
1093
- self.padding = padding
1094
- self.dilation = dilation
1095
-
1096
- self.branch_counter = 0
1097
-
1098
- self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
1099
- nn.init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
1100
- self.branch_counter += 1
1101
-
1102
-
1103
- if groups < out_channels:
1104
- self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1105
- self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1106
- nn.init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
1107
- nn.init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
1108
- self.weight_rbr_avg_conv.data
1109
- self.weight_rbr_pfir_conv.data
1110
- self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
1111
- self.branch_counter += 1
1112
-
1113
- else:
1114
- raise NotImplementedError
1115
- self.branch_counter += 1
1116
-
1117
- if internal_channels_1x1_3x3 is None:
1118
- internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels
1119
-
1120
- if internal_channels_1x1_3x3 == in_channels:
1121
- self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
1122
- id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
1123
- for i in range(in_channels):
1124
- id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
1125
- id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
1126
- self.register_buffer('id_tensor', id_tensor)
1127
-
1128
- else:
1129
- self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
1130
- nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
1131
- self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
1132
- nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
1133
- self.branch_counter += 1
1134
-
1135
- expand_ratio = 8
1136
- self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
1137
- self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
1138
- nn.init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
1139
- nn.init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
1140
- self.branch_counter += 1
1141
-
1142
- if out_channels == in_channels and stride == 1:
1143
- self.branch_counter += 1
1144
-
1145
- self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
1146
- self.bn = nn.BatchNorm2d(out_channels)
1147
-
1148
- self.fre_init()
1149
-
1150
- nn.init.constant_(self.vector[0, :], 0.25) #origin
1151
- nn.init.constant_(self.vector[1, :], 0.25) #avg
1152
- nn.init.constant_(self.vector[2, :], 0.0) #prior
1153
- nn.init.constant_(self.vector[3, :], 0.5) #1x1_kxk
1154
- nn.init.constant_(self.vector[4, :], 0.5) #dws_conv
1155
-
1156
-
1157
- def fre_init(self):
1158
- prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
1159
- half_fg = self.out_channels/2
1160
- for i in range(self.out_channels):
1161
- for h in range(3):
1162
- for w in range(3):
1163
- if i < half_fg:
1164
- prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
1165
- else:
1166
- prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)
1167
-
1168
- self.register_buffer('weight_rbr_prior', prior_tensor)
1169
-
1170
- def weight_gen(self):
1171
-
1172
- weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])
1173
-
1174
- weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
1175
-
1176
- weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])
1177
-
1178
- weight_rbr_1x1_kxk_conv1 = None
1179
- if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
1180
- weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
1181
- elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
1182
- weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
1183
- else:
1184
- raise NotImplementedError
1185
- weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2
1186
-
1187
- if self.groups > 1:
1188
- g = self.groups
1189
- t, ig = weight_rbr_1x1_kxk_conv1.size()
1190
- o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
1191
- weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
1192
- weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
1193
- weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
1194
- else:
1195
- weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)
1196
-
1197
- weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])
1198
-
1199
- weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
1200
- weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])
1201
-
1202
- weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv
1203
-
1204
- return weight
1205
-
1206
- def dwsc2full(self, weight_dw, weight_pw, groups):
1207
-
1208
- t, ig, h, w = weight_dw.size()
1209
- o, _, _, _ = weight_pw.size()
1210
- tg = int(t/groups)
1211
- i = int(ig*groups)
1212
- weight_dw = weight_dw.view(groups, tg, ig, h, w)
1213
- weight_pw = weight_pw.squeeze().view(o, groups, tg)
1214
-
1215
- weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
1216
- return weight_dsc.view(o, i, h, w)
1217
-
1218
- def forward(self, inputs):
1219
- weight = self.weight_gen()
1220
- out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
1221
-
1222
- return self.nonlinear(self.bn(out))
1223
-
1224
- class RepConv_OREPA(nn.Module):
1225
-
1226
- def __init__(self, c1, c2, k=3, s=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False, nonlinear=nn.SiLU()):
1227
- super(RepConv_OREPA, self).__init__()
1228
- self.deploy = deploy
1229
- self.groups = groups
1230
- self.in_channels = c1
1231
- self.out_channels = c2
1232
-
1233
- self.padding = padding
1234
- self.dilation = dilation
1235
- self.groups = groups
1236
-
1237
- assert k == 3
1238
- assert padding == 1
1239
-
1240
- padding_11 = padding - k // 2
1241
-
1242
- if nonlinear is None:
1243
- self.nonlinearity = nn.Identity()
1244
- else:
1245
- self.nonlinearity = nonlinear
1246
-
1247
- if use_se:
1248
- self.se = SEBlock(self.out_channels, internal_neurons=self.out_channels // 16)
1249
- else:
1250
- self.se = nn.Identity()
1251
-
1252
- if deploy:
1253
- self.rbr_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s,
1254
- padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
1255
-
1256
- else:
1257
- self.rbr_identity = nn.BatchNorm2d(num_features=self.in_channels) if self.out_channels == self.in_channels and s == 1 else None
1258
- self.rbr_dense = OREPA_3x3_RepConv(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s, padding=padding, groups=groups, dilation=1)
1259
- self.rbr_1x1 = ConvBN(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=1, stride=s, padding=padding_11, groups=groups, dilation=1)
1260
- print('RepVGG Block, identity = ', self.rbr_identity)
1261
-
1262
-
1263
- def forward(self, inputs):
1264
- if hasattr(self, 'rbr_reparam'):
1265
- return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
1266
-
1267
- if self.rbr_identity is None:
1268
- id_out = 0
1269
- else:
1270
- id_out = self.rbr_identity(inputs)
1271
-
1272
- out1 = self.rbr_dense(inputs)
1273
- out2 = self.rbr_1x1(inputs)
1274
- out3 = id_out
1275
- out = out1 + out2 + out3
1276
-
1277
- return self.nonlinearity(self.se(out))
1278
-
1279
-
1280
- # Optional. This improves the accuracy and facilitates quantization.
1281
- # 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
1282
- # 2. Use like this.
1283
- # loss = criterion(....)
1284
- # for every RepVGGBlock blk:
1285
- # loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
1286
- # optimizer.zero_grad()
1287
- # loss.backward()
1288
-
1289
- # Not used for OREPA
1290
- def get_custom_L2(self):
1291
- K3 = self.rbr_dense.weight_gen()
1292
- K1 = self.rbr_1x1.conv.weight
1293
- t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1294
- t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1295
-
1296
- l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
1297
- eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel.
1298
- l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2.
1299
- return l2_loss_eq_kernel + l2_loss_circle
1300
-
1301
- def get_equivalent_kernel_bias(self):
1302
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
1303
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
1304
- kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
1305
- return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
1306
-
1307
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
1308
- if kernel1x1 is None:
1309
- return 0
1310
- else:
1311
- return torch.nn.functional.pad(kernel1x1, [1,1,1,1])
1312
-
1313
- def _fuse_bn_tensor(self, branch):
1314
- if branch is None:
1315
- return 0, 0
1316
- if not isinstance(branch, nn.BatchNorm2d):
1317
- if isinstance(branch, OREPA_3x3_RepConv):
1318
- kernel = branch.weight_gen()
1319
- elif isinstance(branch, ConvBN):
1320
- kernel = branch.conv.weight
1321
- else:
1322
- raise NotImplementedError
1323
- running_mean = branch.bn.running_mean
1324
- running_var = branch.bn.running_var
1325
- gamma = branch.bn.weight
1326
- beta = branch.bn.bias
1327
- eps = branch.bn.eps
1328
- else:
1329
- if not hasattr(self, 'id_tensor'):
1330
- input_dim = self.in_channels // self.groups
1331
- kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
1332
- for i in range(self.in_channels):
1333
- kernel_value[i, i % input_dim, 1, 1] = 1
1334
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
1335
- kernel = self.id_tensor
1336
- running_mean = branch.running_mean
1337
- running_var = branch.running_var
1338
- gamma = branch.weight
1339
- beta = branch.bias
1340
- eps = branch.eps
1341
- std = (running_var + eps).sqrt()
1342
- t = (gamma / std).reshape(-1, 1, 1, 1)
1343
- return kernel * t, beta - running_mean * gamma / std
1344
-
1345
- def switch_to_deploy(self):
1346
- if hasattr(self, 'rbr_reparam'):
1347
- return
1348
- print(f"RepConv_OREPA.switch_to_deploy")
1349
- kernel, bias = self.get_equivalent_kernel_bias()
1350
- self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
1351
- kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
1352
- padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
1353
- self.rbr_reparam.weight.data = kernel
1354
- self.rbr_reparam.bias.data = bias
1355
- for para in self.parameters():
1356
- para.detach_()
1357
- self.__delattr__('rbr_dense')
1358
- self.__delattr__('rbr_1x1')
1359
- if hasattr(self, 'rbr_identity'):
1360
- self.__delattr__('rbr_identity')
1361
-
1362
- ##### end of orepa #####
1363
-
1364
-
1365
- ##### swin transformer #####
1366
-
1367
- class WindowAttention(nn.Module):
1368
-
1369
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
1370
-
1371
- super().__init__()
1372
- self.dim = dim
1373
- self.window_size = window_size # Wh, Ww
1374
- self.num_heads = num_heads
1375
- head_dim = dim // num_heads
1376
- self.scale = qk_scale or head_dim ** -0.5
1377
-
1378
- # define a parameter table of relative position bias
1379
- self.relative_position_bias_table = nn.Parameter(
1380
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
1381
-
1382
- # get pair-wise relative position index for each token inside the window
1383
- coords_h = torch.arange(self.window_size[0])
1384
- coords_w = torch.arange(self.window_size[1])
1385
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1386
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1387
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1388
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1389
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1390
- relative_coords[:, :, 1] += self.window_size[1] - 1
1391
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1392
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1393
- self.register_buffer("relative_position_index", relative_position_index)
1394
-
1395
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
1396
- self.attn_drop = nn.Dropout(attn_drop)
1397
- self.proj = nn.Linear(dim, dim)
1398
- self.proj_drop = nn.Dropout(proj_drop)
1399
-
1400
- nn.init.normal_(self.relative_position_bias_table, std=.02)
1401
- self.softmax = nn.Softmax(dim=-1)
1402
-
1403
- def forward(self, x, mask=None):
1404
-
1405
- B_, N, C = x.shape
1406
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
1407
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1408
-
1409
- q = q * self.scale
1410
- attn = (q @ k.transpose(-2, -1))
1411
-
1412
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
1413
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1414
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1415
- attn = attn + relative_position_bias.unsqueeze(0)
1416
-
1417
- if mask is not None:
1418
- nW = mask.shape[0]
1419
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1420
- attn = attn.view(-1, self.num_heads, N, N)
1421
- attn = self.softmax(attn)
1422
- else:
1423
- attn = self.softmax(attn)
1424
-
1425
- attn = self.attn_drop(attn)
1426
-
1427
- # print(attn.dtype, v.dtype)
1428
- try:
1429
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1430
- except:
1431
- #print(attn.dtype, v.dtype)
1432
- x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1433
- x = self.proj(x)
1434
- x = self.proj_drop(x)
1435
- return x
1436
-
1437
- class Mlp(nn.Module):
1438
-
1439
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1440
- super().__init__()
1441
- out_features = out_features or in_features
1442
- hidden_features = hidden_features or in_features
1443
- self.fc1 = nn.Linear(in_features, hidden_features)
1444
- self.act = act_layer()
1445
- self.fc2 = nn.Linear(hidden_features, out_features)
1446
- self.drop = nn.Dropout(drop)
1447
-
1448
- def forward(self, x):
1449
- x = self.fc1(x)
1450
- x = self.act(x)
1451
- x = self.drop(x)
1452
- x = self.fc2(x)
1453
- x = self.drop(x)
1454
- return x
1455
-
1456
- def window_partition(x, window_size):
1457
-
1458
- B, H, W, C = x.shape
1459
- assert H % window_size == 0, 'feature map h and w can not divide by window size'
1460
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1461
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1462
- return windows
1463
-
1464
- def window_reverse(windows, window_size, H, W):
1465
-
1466
- B = int(windows.shape[0] / (H * W / window_size / window_size))
1467
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1468
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1469
- return x
1470
-
1471
-
1472
- class SwinTransformerLayer(nn.Module):
1473
-
1474
- def __init__(self, dim, num_heads, window_size=8, shift_size=0,
1475
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
1476
- act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
1477
- super().__init__()
1478
- self.dim = dim
1479
- self.num_heads = num_heads
1480
- self.window_size = window_size
1481
- self.shift_size = shift_size
1482
- self.mlp_ratio = mlp_ratio
1483
- # if min(self.input_resolution) <= self.window_size:
1484
- # # if window size is larger than input resolution, we don't partition windows
1485
- # self.shift_size = 0
1486
- # self.window_size = min(self.input_resolution)
1487
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1488
-
1489
- self.norm1 = norm_layer(dim)
1490
- self.attn = WindowAttention(
1491
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1492
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
1493
-
1494
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1495
- self.norm2 = norm_layer(dim)
1496
- mlp_hidden_dim = int(dim * mlp_ratio)
1497
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1498
-
1499
- def create_mask(self, H, W):
1500
- # calculate attention mask for SW-MSA
1501
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1502
- h_slices = (slice(0, -self.window_size),
1503
- slice(-self.window_size, -self.shift_size),
1504
- slice(-self.shift_size, None))
1505
- w_slices = (slice(0, -self.window_size),
1506
- slice(-self.window_size, -self.shift_size),
1507
- slice(-self.shift_size, None))
1508
- cnt = 0
1509
- for h in h_slices:
1510
- for w in w_slices:
1511
- img_mask[:, h, w, :] = cnt
1512
- cnt += 1
1513
-
1514
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1515
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1516
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1517
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1518
-
1519
- return attn_mask
1520
-
1521
- def forward(self, x):
1522
- # reshape x[b c h w] to x[b l c]
1523
- _, _, H_, W_ = x.shape
1524
-
1525
- Padding = False
1526
- if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1527
- Padding = True
1528
- # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1529
- pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1530
- pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1531
- x = F.pad(x, (0, pad_r, 0, pad_b))
1532
-
1533
- # print('2', x.shape)
1534
- B, C, H, W = x.shape
1535
- L = H * W
1536
- x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1537
-
1538
- # create mask from init to forward
1539
- if self.shift_size > 0:
1540
- attn_mask = self.create_mask(H, W).to(x.device)
1541
- else:
1542
- attn_mask = None
1543
-
1544
- shortcut = x
1545
- x = self.norm1(x)
1546
- x = x.view(B, H, W, C)
1547
-
1548
- # cyclic shift
1549
- if self.shift_size > 0:
1550
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1551
- else:
1552
- shifted_x = x
1553
-
1554
- # partition windows
1555
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1556
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1557
-
1558
- # W-MSA/SW-MSA
1559
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1560
-
1561
- # merge windows
1562
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1563
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
1564
-
1565
- # reverse cyclic shift
1566
- if self.shift_size > 0:
1567
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1568
- else:
1569
- x = shifted_x
1570
- x = x.view(B, H * W, C)
1571
-
1572
- # FFN
1573
- x = shortcut + self.drop_path(x)
1574
- x = x + self.drop_path(self.mlp(self.norm2(x)))
1575
-
1576
- x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1577
-
1578
- if Padding:
1579
- x = x[:, :, :H_, :W_] # reverse padding
1580
-
1581
- return x
1582
-
1583
-
1584
- class SwinTransformerBlock(nn.Module):
1585
- def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
1586
- super().__init__()
1587
- self.conv = None
1588
- if c1 != c2:
1589
- self.conv = Conv(c1, c2)
1590
-
1591
- # remove input_resolution
1592
- self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
1593
- shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1594
-
1595
- def forward(self, x):
1596
- if self.conv is not None:
1597
- x = self.conv(x)
1598
- x = self.blocks(x)
1599
- return x
1600
-
1601
-
1602
- class STCSPA(nn.Module):
1603
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1604
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1605
- super(STCSPA, self).__init__()
1606
- c_ = int(c2 * e) # hidden channels
1607
- self.cv1 = Conv(c1, c_, 1, 1)
1608
- self.cv2 = Conv(c1, c_, 1, 1)
1609
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1610
- num_heads = c_ // 32
1611
- self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1612
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1613
-
1614
- def forward(self, x):
1615
- y1 = self.m(self.cv1(x))
1616
- y2 = self.cv2(x)
1617
- return self.cv3(torch.cat((y1, y2), dim=1))
1618
-
1619
-
1620
- class STCSPB(nn.Module):
1621
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1622
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1623
- super(STCSPB, self).__init__()
1624
- c_ = int(c2) # hidden channels
1625
- self.cv1 = Conv(c1, c_, 1, 1)
1626
- self.cv2 = Conv(c_, c_, 1, 1)
1627
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1628
- num_heads = c_ // 32
1629
- self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1630
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1631
-
1632
- def forward(self, x):
1633
- x1 = self.cv1(x)
1634
- y1 = self.m(x1)
1635
- y2 = self.cv2(x1)
1636
- return self.cv3(torch.cat((y1, y2), dim=1))
1637
-
1638
-
1639
- class STCSPC(nn.Module):
1640
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1641
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1642
- super(STCSPC, self).__init__()
1643
- c_ = int(c2 * e) # hidden channels
1644
- self.cv1 = Conv(c1, c_, 1, 1)
1645
- self.cv2 = Conv(c1, c_, 1, 1)
1646
- self.cv3 = Conv(c_, c_, 1, 1)
1647
- self.cv4 = Conv(2 * c_, c2, 1, 1)
1648
- num_heads = c_ // 32
1649
- self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1650
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1651
-
1652
- def forward(self, x):
1653
- y1 = self.cv3(self.m(self.cv1(x)))
1654
- y2 = self.cv2(x)
1655
- return self.cv4(torch.cat((y1, y2), dim=1))
1656
-
1657
- ##### end of swin transformer #####
1658
-
1659
-
1660
- ##### swin transformer v2 #####
1661
-
1662
- class WindowAttention_v2(nn.Module):
1663
-
1664
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
1665
- pretrained_window_size=[0, 0]):
1666
-
1667
- super().__init__()
1668
- self.dim = dim
1669
- self.window_size = window_size # Wh, Ww
1670
- self.pretrained_window_size = pretrained_window_size
1671
- self.num_heads = num_heads
1672
-
1673
- self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
1674
-
1675
- # mlp to generate continuous relative position bias
1676
- self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
1677
- nn.ReLU(inplace=True),
1678
- nn.Linear(512, num_heads, bias=False))
1679
-
1680
- # get relative_coords_table
1681
- relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
1682
- relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
1683
- relative_coords_table = torch.stack(
1684
- torch.meshgrid([relative_coords_h,
1685
- relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
1686
- if pretrained_window_size[0] > 0:
1687
- relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
1688
- relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
1689
- else:
1690
- relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
1691
- relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
1692
- relative_coords_table *= 8 # normalize to -8, 8
1693
- relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
1694
- torch.abs(relative_coords_table) + 1.0) / np.log2(8)
1695
-
1696
- self.register_buffer("relative_coords_table", relative_coords_table)
1697
-
1698
- # get pair-wise relative position index for each token inside the window
1699
- coords_h = torch.arange(self.window_size[0])
1700
- coords_w = torch.arange(self.window_size[1])
1701
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1702
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1703
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1704
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1705
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1706
- relative_coords[:, :, 1] += self.window_size[1] - 1
1707
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1708
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1709
- self.register_buffer("relative_position_index", relative_position_index)
1710
-
1711
- self.qkv = nn.Linear(dim, dim * 3, bias=False)
1712
- if qkv_bias:
1713
- self.q_bias = nn.Parameter(torch.zeros(dim))
1714
- self.v_bias = nn.Parameter(torch.zeros(dim))
1715
- else:
1716
- self.q_bias = None
1717
- self.v_bias = None
1718
- self.attn_drop = nn.Dropout(attn_drop)
1719
- self.proj = nn.Linear(dim, dim)
1720
- self.proj_drop = nn.Dropout(proj_drop)
1721
- self.softmax = nn.Softmax(dim=-1)
1722
-
1723
- def forward(self, x, mask=None):
1724
-
1725
- B_, N, C = x.shape
1726
- qkv_bias = None
1727
- if self.q_bias is not None:
1728
- qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
1729
- qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
1730
- qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
1731
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1732
-
1733
- # cosine attention
1734
- attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
1735
- logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
1736
- attn = attn * logit_scale
1737
-
1738
- relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
1739
- relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
1740
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1741
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1742
- relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
1743
- attn = attn + relative_position_bias.unsqueeze(0)
1744
-
1745
- if mask is not None:
1746
- nW = mask.shape[0]
1747
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1748
- attn = attn.view(-1, self.num_heads, N, N)
1749
- attn = self.softmax(attn)
1750
- else:
1751
- attn = self.softmax(attn)
1752
-
1753
- attn = self.attn_drop(attn)
1754
-
1755
- try:
1756
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1757
- except:
1758
- x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1759
-
1760
- x = self.proj(x)
1761
- x = self.proj_drop(x)
1762
- return x
1763
-
1764
- def extra_repr(self) -> str:
1765
- return f'dim={self.dim}, window_size={self.window_size}, ' \
1766
- f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
1767
-
1768
- def flops(self, N):
1769
- # calculate flops for 1 window with token length of N
1770
- flops = 0
1771
- # qkv = self.qkv(x)
1772
- flops += N * self.dim * 3 * self.dim
1773
- # attn = (q @ k.transpose(-2, -1))
1774
- flops += self.num_heads * N * (self.dim // self.num_heads) * N
1775
- # x = (attn @ v)
1776
- flops += self.num_heads * N * N * (self.dim // self.num_heads)
1777
- # x = self.proj(x)
1778
- flops += N * self.dim * self.dim
1779
- return flops
1780
-
1781
- class Mlp_v2(nn.Module):
1782
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1783
- super().__init__()
1784
- out_features = out_features or in_features
1785
- hidden_features = hidden_features or in_features
1786
- self.fc1 = nn.Linear(in_features, hidden_features)
1787
- self.act = act_layer()
1788
- self.fc2 = nn.Linear(hidden_features, out_features)
1789
- self.drop = nn.Dropout(drop)
1790
-
1791
- def forward(self, x):
1792
- x = self.fc1(x)
1793
- x = self.act(x)
1794
- x = self.drop(x)
1795
- x = self.fc2(x)
1796
- x = self.drop(x)
1797
- return x
1798
-
1799
-
1800
- def window_partition_v2(x, window_size):
1801
-
1802
- B, H, W, C = x.shape
1803
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1804
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1805
- return windows
1806
-
1807
-
1808
- def window_reverse_v2(windows, window_size, H, W):
1809
-
1810
- B = int(windows.shape[0] / (H * W / window_size / window_size))
1811
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1812
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1813
- return x
1814
-
1815
-
1816
- class SwinTransformerLayer_v2(nn.Module):
1817
-
1818
- def __init__(self, dim, num_heads, window_size=7, shift_size=0,
1819
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
1820
- act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
1821
- super().__init__()
1822
- self.dim = dim
1823
- #self.input_resolution = input_resolution
1824
- self.num_heads = num_heads
1825
- self.window_size = window_size
1826
- self.shift_size = shift_size
1827
- self.mlp_ratio = mlp_ratio
1828
- #if min(self.input_resolution) <= self.window_size:
1829
- # # if window size is larger than input resolution, we don't partition windows
1830
- # self.shift_size = 0
1831
- # self.window_size = min(self.input_resolution)
1832
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1833
-
1834
- self.norm1 = norm_layer(dim)
1835
- self.attn = WindowAttention_v2(
1836
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1837
- qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
1838
- pretrained_window_size=(pretrained_window_size, pretrained_window_size))
1839
-
1840
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1841
- self.norm2 = norm_layer(dim)
1842
- mlp_hidden_dim = int(dim * mlp_ratio)
1843
- self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1844
-
1845
- def create_mask(self, H, W):
1846
- # calculate attention mask for SW-MSA
1847
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1848
- h_slices = (slice(0, -self.window_size),
1849
- slice(-self.window_size, -self.shift_size),
1850
- slice(-self.shift_size, None))
1851
- w_slices = (slice(0, -self.window_size),
1852
- slice(-self.window_size, -self.shift_size),
1853
- slice(-self.shift_size, None))
1854
- cnt = 0
1855
- for h in h_slices:
1856
- for w in w_slices:
1857
- img_mask[:, h, w, :] = cnt
1858
- cnt += 1
1859
-
1860
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1861
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1862
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1863
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1864
-
1865
- return attn_mask
1866
-
1867
- def forward(self, x):
1868
- # reshape x[b c h w] to x[b l c]
1869
- _, _, H_, W_ = x.shape
1870
-
1871
- Padding = False
1872
- if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1873
- Padding = True
1874
- # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1875
- pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1876
- pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1877
- x = F.pad(x, (0, pad_r, 0, pad_b))
1878
-
1879
- # print('2', x.shape)
1880
- B, C, H, W = x.shape
1881
- L = H * W
1882
- x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1883
-
1884
- # create mask from init to forward
1885
- if self.shift_size > 0:
1886
- attn_mask = self.create_mask(H, W).to(x.device)
1887
- else:
1888
- attn_mask = None
1889
-
1890
- shortcut = x
1891
- x = x.view(B, H, W, C)
1892
-
1893
- # cyclic shift
1894
- if self.shift_size > 0:
1895
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1896
- else:
1897
- shifted_x = x
1898
-
1899
- # partition windows
1900
- x_windows = window_partition_v2(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1901
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1902
-
1903
- # W-MSA/SW-MSA
1904
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1905
-
1906
- # merge windows
1907
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1908
- shifted_x = window_reverse_v2(attn_windows, self.window_size, H, W) # B H' W' C
1909
-
1910
- # reverse cyclic shift
1911
- if self.shift_size > 0:
1912
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1913
- else:
1914
- x = shifted_x
1915
- x = x.view(B, H * W, C)
1916
- x = shortcut + self.drop_path(self.norm1(x))
1917
-
1918
- # FFN
1919
- x = x + self.drop_path(self.norm2(self.mlp(x)))
1920
- x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1921
-
1922
- if Padding:
1923
- x = x[:, :, :H_, :W_] # reverse padding
1924
-
1925
- return x
1926
-
1927
- def extra_repr(self) -> str:
1928
- return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
1929
- f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
1930
-
1931
- def flops(self):
1932
- flops = 0
1933
- H, W = self.input_resolution
1934
- # norm1
1935
- flops += self.dim * H * W
1936
- # W-MSA/SW-MSA
1937
- nW = H * W / self.window_size / self.window_size
1938
- flops += nW * self.attn.flops(self.window_size * self.window_size)
1939
- # mlp
1940
- flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
1941
- # norm2
1942
- flops += self.dim * H * W
1943
- return flops
1944
-
1945
-
1946
- class SwinTransformer2Block(nn.Module):
1947
- def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
1948
- super().__init__()
1949
- self.conv = None
1950
- if c1 != c2:
1951
- self.conv = Conv(c1, c2)
1952
-
1953
- # remove input_resolution
1954
- self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
1955
- shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1956
-
1957
- def forward(self, x):
1958
- if self.conv is not None:
1959
- x = self.conv(x)
1960
- x = self.blocks(x)
1961
- return x
1962
-
1963
-
1964
- class ST2CSPA(nn.Module):
1965
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1966
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1967
- super(ST2CSPA, self).__init__()
1968
- c_ = int(c2 * e) # hidden channels
1969
- self.cv1 = Conv(c1, c_, 1, 1)
1970
- self.cv2 = Conv(c1, c_, 1, 1)
1971
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1972
- num_heads = c_ // 32
1973
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1974
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1975
-
1976
- def forward(self, x):
1977
- y1 = self.m(self.cv1(x))
1978
- y2 = self.cv2(x)
1979
- return self.cv3(torch.cat((y1, y2), dim=1))
1980
-
1981
-
1982
- class ST2CSPB(nn.Module):
1983
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1984
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1985
- super(ST2CSPB, self).__init__()
1986
- c_ = int(c2) # hidden channels
1987
- self.cv1 = Conv(c1, c_, 1, 1)
1988
- self.cv2 = Conv(c_, c_, 1, 1)
1989
- self.cv3 = Conv(2 * c_, c2, 1, 1)
1990
- num_heads = c_ // 32
1991
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1992
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1993
-
1994
- def forward(self, x):
1995
- x1 = self.cv1(x)
1996
- y1 = self.m(x1)
1997
- y2 = self.cv2(x1)
1998
- return self.cv3(torch.cat((y1, y2), dim=1))
1999
-
2000
-
2001
- class ST2CSPC(nn.Module):
2002
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
2003
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
2004
- super(ST2CSPC, self).__init__()
2005
- c_ = int(c2 * e) # hidden channels
2006
- self.cv1 = Conv(c1, c_, 1, 1)
2007
- self.cv2 = Conv(c1, c_, 1, 1)
2008
- self.cv3 = Conv(c_, c_, 1, 1)
2009
- self.cv4 = Conv(2 * c_, c2, 1, 1)
2010
- num_heads = c_ // 32
2011
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
2012
- #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
2013
-
2014
- def forward(self, x):
2015
- y1 = self.cv3(self.m(self.cv1(x)))
2016
- y2 = self.cv2(x)
2017
- return self.cv4(torch.cat((y1, y2), dim=1))
2018
-
2019
- ##### end of swin transformer v2 #####