Sadiyath's picture
Set public link
212ef57 verified
import gradio as gr
from PIL import Image, ImageFilter
import numpy as np
import cv2
import matplotlib.pyplot as plt
def load_image(image):
return image
def apply_negative(image):
img_np = np.array(image)
negative = 255 - img_np
return Image.fromarray(negative)
def binarize_image(image, threshold):
img_np = np.array(image.convert('L'))
_, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY)
return Image.fromarray(binary)
def resize_image(image, width, height):
return image.resize((width, height))
def rotate_image(image, angle):
return image.rotate(angle)
def histo_gray(image):
img_np = np.array(image.convert('L'))
hist = cv2.calcHist([img_np], [0], None, [256], [0, 256])
plt.plot(hist)
plt.title('Histogramme des niveaux de gris')
plt.xlabel('Intensité des pixels')
plt.ylabel('Nombre de pixels')
plt.show()
return hist
def filtre_gauss(image, kernel_width, kernel_height):
img_np = np.array(image)
blurred = cv2.GaussianBlur(img_np, (kernel_width, kernel_height), 0)
return Image.fromarray(blurred)
def erosion(image, taille):
img_np = np.array(image.convert('L'))
kernel = np.ones((taille, taille), np.uint8)
eroded = cv2.erode(img_np, kernel, iterations=1)
return Image.fromarray(eroded)
def dilatation(image, taille):
img_np = np.array(image.convert('L'))
kernel = np.ones((taille, taille), np.uint8)
dilated = cv2.dilate(img_np, kernel, iterations=1)
return Image.fromarray(dilated)
def extract_edges(image):
img_np = np.array(image.convert('L'))
edges = cv2.Canny(img_np, 100, 200)
return Image.fromarray(edges)
# Interface Gradio
def image_processing(image, operation, threshold=128, width=100, height=100, angle=0, kernel_width=5, kernel_height=5, taille_e=3, taille_d=3):
if operation == "Négatif":
return apply_negative(image)
elif operation == "Binarisation":
return binarize_image(image, threshold)
elif operation == "Redimensionner":
return resize_image(image, width, height)
elif operation == "Rotation":
return rotate_image(image, angle)
elif operation == "Histogramme des niveaux de gris":
return histo_gray(image)
elif operation == "Filtre gaussien":
return filtre_gauss(image, kernel_width, kernel_height)
elif operation == "Erosion":
return erosion(image, taille_e)
elif operation == "Dilatation":
return dilatation(image, taille_d)
elif operation == "Extraction de contours":
return extract_edges(image)
with gr.Blocks() as demo:
gr.Markdown("## Projet de Traitement d'Image")
with gr.Row():
image_input = gr.Image(type="pil", label="Charger Image")
operation = gr.Radio(["Négatif", "Binarisation", "Redimensionner", "Rotation", "Histogramme des niveaux de gris", "Filtre gaussien", "Extraction de contours", "Erosion", "Dilatation"], label="Opération")
threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=False)
width = gr.Number(value=100, label="Largeur", visible=False)
height = gr.Number(value=100, label="Hauteur", visible=False)
angle = gr.Number(value=0, label="Angle de Rotation", visible=False)
kernel_width = gr.Number(value=5, label="Largeur du kernel du filtre gaussien", visible=False)
kernel_height = gr.Number(value=5, label="Hauteur du kernel du filtre gaussien", visible=False)
taille_e = gr.Number(value=3, label="Taille du filtre pour l'érosion", visible=False)
taille_d = gr.Number(value=3, label="Taille du filtre pour la dilatation", visible=False)
image_output = gr.Image(label="Image Modifiée")
def update_inputs(operation):
if operation == "Binarisation":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif operation == "Redimensionner":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif operation == "Rotation":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif operation == "Filtre gaussien":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif operation == "Erosion":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
elif operation == "Dilatation":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
operation.change(update_inputs, inputs=operation, outputs=[threshold, width, height, angle, kernel_width, kernel_height, taille_e, taille_d])
submit_button = gr.Button("Appliquer")
submit_button.click(image_processing, inputs=[image_input, operation, threshold, width, height, angle, kernel_width, kernel_height, taille_e, taille_d], outputs=image_output)
demo.launch(share=True)