Spaces:
Sleeping
Sleeping
Upload app and requierements
Browse files- app.py +93 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageFilter
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# Fonctions de traitement d'image
|
8 |
+
def load_image(image):
|
9 |
+
return image
|
10 |
+
|
11 |
+
def apply_negative(image):
|
12 |
+
img_np = np.array(image)
|
13 |
+
negative = 255 - img_np
|
14 |
+
return Image.fromarray(negative)
|
15 |
+
|
16 |
+
def binarize_image(image, threshold):
|
17 |
+
img_np = np.array(image.convert('L'))
|
18 |
+
_, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY)
|
19 |
+
return Image.fromarray(binary)
|
20 |
+
|
21 |
+
def resize_image(image, width, height):
|
22 |
+
return image.resize((width, height))
|
23 |
+
|
24 |
+
def rotate_image(image, angle):
|
25 |
+
return image.rotate(angle)
|
26 |
+
|
27 |
+
def histo_gray(image):
|
28 |
+
hist = cv2.calcHist([image], [0], None, [256], [0, 256])
|
29 |
+
plt.plot(hist)
|
30 |
+
plt.title('Histogramme des niveaux de gris')
|
31 |
+
plt.xlabel('Intensité des pixels')
|
32 |
+
plt.ylabel('Nombre de pixels')
|
33 |
+
plt.show()
|
34 |
+
return hist
|
35 |
+
|
36 |
+
def filtre_gauss(image, kernel_width, kernel_heigth):
|
37 |
+
return cv2.GaussianBlur(image, (kernel_width, kernel_heigth), 0)
|
38 |
+
|
39 |
+
def erosion(image, taille):
|
40 |
+
return image.filter(ImageFilter.MinFilter(taille_e))
|
41 |
+
|
42 |
+
def dilatation(image, taille):
|
43 |
+
return image.filter(ImageFilter.MaxFilter(taille_d))
|
44 |
+
|
45 |
+
def extract_edges(image):
|
46 |
+
image_sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize = 5)
|
47 |
+
image_sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize = 5)
|
48 |
+
return image_sobelx, image_sobely
|
49 |
+
|
50 |
+
# Interface Gradio
|
51 |
+
def image_processing(image, operation, threshold=128, width=100, height=100, angle=0):
|
52 |
+
if operation == "Négatif":
|
53 |
+
return apply_negative(image)
|
54 |
+
elif operation == "Binarisation":
|
55 |
+
return binarize_image(image, threshold)
|
56 |
+
elif operation == "Redimensionner":
|
57 |
+
return resize_image(image, width, height)
|
58 |
+
elif operation == "Rotation":
|
59 |
+
return rotate_image(image, angle)
|
60 |
+
elif operation == "Histogramme des niveaux de gris":
|
61 |
+
return histo_gray(image)
|
62 |
+
elif operation == "Filtre gaussien":
|
63 |
+
return filtre_gauss(image, kernel_width, kernel_heigth)
|
64 |
+
elif operation == "Erosion":
|
65 |
+
return erosion(image, taille_e)
|
66 |
+
elif operation == "Dilatation":
|
67 |
+
return dilatation(image, taille_d)
|
68 |
+
elif operation == "Extraction de contours":
|
69 |
+
return extract_edges(image)
|
70 |
+
|
71 |
+
# Interface Gradio
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
gr.Markdown("## Projet de Traitement d'Image")
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
image_input = gr.Image(type="pil", label="Charger Image")
|
77 |
+
operation = gr.Radio(["Négatif", "Binarisation", "Redimension", "Rotation", "Histogramme des niveaux de gris", "Filtre gaussien", "Extraction de contours", "Erosion", "Dilatation"], label="Opération")
|
78 |
+
threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=False)
|
79 |
+
width = gr.Number(value=100, label="Largeur", visible=False)
|
80 |
+
height = gr.Number(value=100, label="Hauteur", visible=False)
|
81 |
+
angle = gr.Number(value=0, label="Angle de Rotation", visible=False)
|
82 |
+
kernel_width = gr.Number(value=5, label="Largeur du kernel du filtre gaussien", visible=False)
|
83 |
+
kernel_heigth = gr.Number(value=5, label="Hauteur du kernel du filtre gaussien", visible=False)
|
84 |
+
taille_e = gr.Number(value=3, label="Taille du filtre pour l'érosion", visible=False)
|
85 |
+
taille_d = gr.Number(value=3, label="Taille du filtre pour la dilatation", visible=False)
|
86 |
+
|
87 |
+
image_output = gr.Image(label="Image Modifiée")
|
88 |
+
|
89 |
+
submit_button = gr.Button("Appliquer")
|
90 |
+
submit_button.click(image_processing, inputs=[image_input, operation, threshold, width, height, angle], outputs=image_output)
|
91 |
+
|
92 |
+
# Lancer l'application Gradio
|
93 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.40.0
|
2 |
+
Pillow==9.4.0
|
3 |
+
opencv-python-headless==4.8.0.74
|
4 |
+
matplotlib==3.7.1
|
5 |
+
numpy==1.24.3
|