import gradio as gr from PIL import Image, ImageFilter import numpy as np import cv2 import matplotlib.pyplot as plt def load_image(image): return image def apply_negative(image): img_np = np.array(image) negative = 255 - img_np return Image.fromarray(negative) def binarize_image(image, threshold): img_np = np.array(image.convert('L')) _, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY) return Image.fromarray(binary) def resize_image(image, width, height): return image.resize((width, height)) def rotate_image(image, angle): return image.rotate(angle) def histo_gray(image): img_np = np.array(image.convert('L')) hist = cv2.calcHist([img_np], [0], None, [256], [0, 256]) plt.plot(hist) plt.title('Histogramme des niveaux de gris') plt.xlabel('Intensité des pixels') plt.ylabel('Nombre de pixels') plt.show() return hist def filtre_gauss(image, kernel_width, kernel_height): img_np = np.array(image) blurred = cv2.GaussianBlur(img_np, (kernel_width, kernel_height), 0) return Image.fromarray(blurred) def erosion(image, taille): img_np = np.array(image.convert('L')) kernel = np.ones((taille, taille), np.uint8) eroded = cv2.erode(img_np, kernel, iterations=1) return Image.fromarray(eroded) def dilatation(image, taille): img_np = np.array(image.convert('L')) kernel = np.ones((taille, taille), np.uint8) dilated = cv2.dilate(img_np, kernel, iterations=1) return Image.fromarray(dilated) def extract_edges(image): img_np = np.array(image.convert('L')) edges = cv2.Canny(img_np, 100, 200) return Image.fromarray(edges) # Interface Gradio def image_processing(image, operation, threshold=128, width=100, height=100, angle=0, kernel_width=5, kernel_height=5, taille_e=3, taille_d=3): if operation == "Négatif": return apply_negative(image) elif operation == "Binarisation": return binarize_image(image, threshold) elif operation == "Redimensionner": return resize_image(image, width, height) elif operation == "Rotation": return rotate_image(image, angle) elif operation == "Histogramme des niveaux de gris": return histo_gray(image) elif operation == "Filtre gaussien": return filtre_gauss(image, kernel_width, kernel_height) elif operation == "Erosion": return erosion(image, taille_e) elif operation == "Dilatation": return dilatation(image, taille_d) elif operation == "Extraction de contours": return extract_edges(image) with gr.Blocks() as demo: gr.Markdown("## Projet de Traitement d'Image") with gr.Row(): image_input = gr.Image(type="pil", label="Charger Image") operation = gr.Radio(["Négatif", "Binarisation", "Redimensionner", "Rotation", "Histogramme des niveaux de gris", "Filtre gaussien", "Extraction de contours", "Erosion", "Dilatation"], label="Opération") threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=False) width = gr.Number(value=100, label="Largeur", visible=False) height = gr.Number(value=100, label="Hauteur", visible=False) angle = gr.Number(value=0, label="Angle de Rotation", visible=False) kernel_width = gr.Number(value=5, label="Largeur du kernel du filtre gaussien", visible=False) kernel_height = gr.Number(value=5, label="Hauteur du kernel du filtre gaussien", visible=False) taille_e = gr.Number(value=3, label="Taille du filtre pour l'érosion", visible=False) taille_d = gr.Number(value=3, label="Taille du filtre pour la dilatation", visible=False) image_output = gr.Image(label="Image Modifiée") def update_inputs(operation): if operation == "Binarisation": return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) elif operation == "Redimensionner": return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) elif operation == "Rotation": return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) elif operation == "Filtre gaussien": return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) elif operation == "Erosion": return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) elif operation == "Dilatation": return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) else: return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) operation.change(update_inputs, inputs=operation, outputs=[threshold, width, height, angle, kernel_width, kernel_height, taille_e, taille_d]) submit_button = gr.Button("Appliquer") submit_button.click(image_processing, inputs=[image_input, operation, threshold, width, height, angle, kernel_width, kernel_height, taille_e, taille_d], outputs=image_output) demo.launch(share=True)