PeterL1n's picture
Update
87d5fe9
raw
history blame
2.75 kB
import gradio as gr
import torch
import os
import spaces
import uuid
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
# Constants
base = "frankjoshua/toonyou_beta6"
loaded = None
# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
device = "cuda"
dtype = torch.float16
adapter = MotionAdapter().to(device, dtype)
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
else:
raise NotImplementedError("No GPU detected!")
# Function
@spaces.GPU(enable_queue=True)
def generate_image(prompt, step):
global loaded
print(prompt, step)
if loaded != step:
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
loaded = step
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step)
name = str(uuid.uuid4()).replace("-", "")
path = f"/tmp/{name}.mp4"
export_to_video(output.frames[0], path, fps=10)
return path
# Gradio Interface
with gr.Blocks(css="style.css") as demo:
gr.HTML("<h1><center>AnimateDiff-Lightning ⚡</center></h1>")
gr.HTML("<p><center>Lightning-fast text-to-video generation</center></p><p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>")
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label='Enter your prompt (English)',
scale=8
)
ckpt = gr.Dropdown(
label='Select inference steps',
choices=[
('1-Step', 1),
('2-Step', 2),
('4-Step', 4),
('8-Step', 8)],
value='4-Step',
interactive=True
)
submit = gr.Button(
scale=1,
variant='primary'
)
video = gr.Video(
label='AnimateDiff-Lightning',
autoplay=True,
)
prompt.submit(
fn=generate_image,
inputs=[prompt, ckpt],
outputs=video,
)
submit.click(
fn=generate_image,
inputs=[prompt, ckpt],
outputs=video,
)
demo.queue().launch()