Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import os | |
import spaces | |
import uuid | |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler | |
from diffusers.utils import export_to_video | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from PIL import Image | |
# Constants | |
base = "frankjoshua/toonyou_beta6" | |
loaded = None | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
if torch.cuda.is_available(): | |
device = "cuda" | |
dtype = torch.float16 | |
adapter = MotionAdapter().to(device, dtype) | |
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
else: | |
raise NotImplementedError("No GPU detected!") | |
# Function | |
def generate_image(prompt, step): | |
global loaded | |
print(prompt, step) | |
if loaded != step: | |
repo = "ByteDance/AnimateDiff-Lightning" | |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" | |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) | |
loaded = step | |
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step) | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.mp4" | |
export_to_video(output.frames[0], path, fps=10) | |
return path | |
# Gradio Interface | |
with gr.Blocks(css="style.css") as demo: | |
gr.HTML("<h1><center>AnimateDiff-Lightning ⚡</center></h1>") | |
gr.HTML("<p><center>Lightning-fast text-to-video generation</center></p><p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>") | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label='Enter your prompt (English)', | |
scale=8 | |
) | |
ckpt = gr.Dropdown( | |
label='Select inference steps', | |
choices=[ | |
('1-Step', 1), | |
('2-Step', 2), | |
('4-Step', 4), | |
('8-Step', 8)], | |
value='4-Step', | |
interactive=True | |
) | |
submit = gr.Button( | |
scale=1, | |
variant='primary' | |
) | |
video = gr.Video( | |
label='AnimateDiff-Lightning', | |
autoplay=True, | |
) | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=video, | |
) | |
submit.click( | |
fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=video, | |
) | |
demo.queue().launch() |