import gradio as gr import torch import os import spaces import uuid from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler from diffusers.utils import export_to_video from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image # Constants base = "frankjoshua/toonyou_beta6" loaded = None # Ensure model and scheduler are initialized in GPU-enabled function if torch.cuda.is_available(): device = "cuda" dtype = torch.float16 adapter = MotionAdapter().to(device, dtype) pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") else: raise NotImplementedError("No GPU detected!") # Function @spaces.GPU(enable_queue=True) def generate_image(prompt, step): global loaded print(prompt, step) if loaded != step: repo = "ByteDance/AnimateDiff-Lightning" ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) loaded = step output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step) name = str(uuid.uuid4()).replace("-", "") path = f"/tmp/{name}.mp4" export_to_video(output.frames[0], path, fps=10) return path # Gradio Interface with gr.Blocks(css="style.css") as demo: gr.HTML("

AnimateDiff-Lightning ⚡

") gr.HTML("

Lightning-fast text-to-video generation

https://huggingface.co/ByteDance/AnimateDiff-Lightning

") with gr.Group(): with gr.Row(): prompt = gr.Textbox( label='Enter your prompt (English)', scale=8 ) ckpt = gr.Dropdown( label='Select inference steps', choices=[ ('1-Step', 1), ('2-Step', 2), ('4-Step', 4), ('8-Step', 8)], value='4-Step', interactive=True ) submit = gr.Button( scale=1, variant='primary' ) video = gr.Video( label='AnimateDiff-Lightning', autoplay=True, ) prompt.submit( fn=generate_image, inputs=[prompt, ckpt], outputs=video, ) submit.click( fn=generate_image, inputs=[prompt, ckpt], outputs=video, ) demo.queue().launch()