Spaces:
Sleeping
Sleeping
Sahithi-07
commited on
Commit
•
37599f2
1
Parent(s):
d3f5c9c
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import AutoTokenizer, BartForConditionalGeneration
|
4 |
+
|
5 |
+
# Load the TAPEX tokenizer and model (replace with your fine-tuned model names)
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
7 |
+
model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
8 |
+
|
9 |
+
|
10 |
+
def predict(table_path, query):
|
11 |
+
"""
|
12 |
+
Predicts answer to a question using the TAPEX model on a given table.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
table_path: Path to the CSV file containing the table data.
|
16 |
+
query: The question to be answered.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
The predicted answer as a string.
|
20 |
+
"""
|
21 |
+
# Load the sales data from CSV
|
22 |
+
sales_record = pd.read_csv(r"C:/Users/sahit/Downloads/LLm of chatbot/10000 Sales Records.csv")
|
23 |
+
sales_record = sales_record.astype(str) # Ensure string type for tokenizer
|
24 |
+
|
25 |
+
# Truncate the input to fit within the model's maximum sequence length
|
26 |
+
max_length = model.config.max_position_embeddings
|
27 |
+
encoding = tokenizer(table=sales_record, query=query, return_tensors="pt", truncation=True, max_length=max_length)
|
28 |
+
|
29 |
+
# Generate the output
|
30 |
+
outputs = model.generate(**encoding)
|
31 |
+
|
32 |
+
# Decode the output
|
33 |
+
prediction = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
34 |
+
return prediction
|
35 |
+
|
36 |
+
st.title("Chatbot with CSV using TAPEX")
|
37 |
+
|
38 |
+
# Upload table data
|
39 |
+
uploaded_file = st.file_uploader("Upload Sales Data (CSV)", type="csv")
|
40 |
+
|
41 |
+
if uploaded_file is not None:
|
42 |
+
# Read the uploaded CSV file
|
43 |
+
df = pd.read_csv(uploaded_file)
|
44 |
+
st.write(df) # Display the uploaded table
|
45 |
+
|
46 |
+
# User query input
|
47 |
+
query = st.text_input("Hello ! Ask me anything about " + uploaded_file.name + " 🤗")
|
48 |
+
|
49 |
+
if query:
|
50 |
+
# Predict answer using the model
|
51 |
+
prediction = predict(uploaded_file.name, query)
|
52 |
+
st.write(f"*Your Question:* {query}")
|
53 |
+
st.write(f"*Predicted Answer:* {prediction}")
|
54 |
+
else:
|
55 |
+
st.info("Please upload a CSV file containing sales data.")
|