Spaces:
Runtime error
Runtime error
File size: 40,079 Bytes
d1a5798 519371c 4571ada 519371c 4571ada 519371c 4571ada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 |
import matplotlib.pyplot as plt
import numpy as np
import datasets
import transformers
import re
import torch
import torch.nn.functional as F
import tqdm
import random
from sklearn.metrics import roc_curve, precision_recall_curve, auc
import argparse
import datetime
import os
import json
import functools
import custom_datasets
from multiprocessing.pool import ThreadPool
import time
# 15 colorblind-friendly colors
COLORS = ["#0072B2", "#009E73", "#D55E00", "#CC79A7", "#F0E442",
"#56B4E9", "#E69F00", "#000000", "#0072B2", "#009E73",
"#D55E00", "#CC79A7", "#F0E442", "#56B4E9", "#E69F00"]
# define regex to match all <extra_id_*> tokens, where * is an integer
pattern = re.compile(r"<extra_id_\d+>")
def load_base_model():
print('MOVING BASE MODEL TO GPU...', end='', flush=True)
start = time.time()
try:
mask_model.cpu()
except NameError:
pass
if args.openai_model is None:
base_model.to(DEVICE)
print(f'DONE ({time.time() - start:.2f}s)')
def load_mask_model():
print('MOVING MASK MODEL TO GPU...', end='', flush=True)
start = time.time()
if args.openai_model is None:
base_model.cpu()
if not args.random_fills:
mask_model.to(DEVICE)
print(f'DONE ({time.time() - start:.2f}s)')
def tokenize_and_mask(text, span_length, pct, ceil_pct=False):
tokens = text.split(' ')
mask_string = '<<<mask>>>'
n_spans = pct * len(tokens) / (span_length + args.buffer_size * 2)
if ceil_pct:
n_spans = np.ceil(n_spans)
n_spans = int(n_spans)
n_masks = 0
while n_masks < n_spans:
start = np.random.randint(0, len(tokens) - span_length)
end = start + span_length
search_start = max(0, start - args.buffer_size)
search_end = min(len(tokens), end + args.buffer_size)
if mask_string not in tokens[search_start:search_end]:
tokens[start:end] = [mask_string]
n_masks += 1
# replace each occurrence of mask_string with <extra_id_NUM>, where NUM increments
num_filled = 0
for idx, token in enumerate(tokens):
if token == mask_string:
tokens[idx] = f'<extra_id_{num_filled}>'
num_filled += 1
assert num_filled == n_masks, f"num_filled {num_filled} != n_masks {n_masks}"
text = ' '.join(tokens)
return text
def count_masks(texts):
return [len([x for x in text.split() if x.startswith("<extra_id_")]) for text in texts]
# replace each masked span with a sample from T5 mask_model
def replace_masks(texts):
n_expected = count_masks(texts)
stop_id = mask_tokenizer.encode(f"<extra_id_{max(n_expected)}>")[0]
tokens = mask_tokenizer(texts, return_tensors="pt", padding=True).to(DEVICE)
outputs = mask_model.generate(**tokens, max_length=150, do_sample=True, top_p=args.mask_top_p, num_return_sequences=1, eos_token_id=stop_id)
return mask_tokenizer.batch_decode(outputs, skip_special_tokens=False)
def extract_fills(texts):
# remove <pad> from beginning of each text
texts = [x.replace("<pad>", "").replace("</s>", "").strip() for x in texts]
# return the text in between each matched mask token
extracted_fills = [pattern.split(x)[1:-1] for x in texts]
# remove whitespace around each fill
extracted_fills = [[y.strip() for y in x] for x in extracted_fills]
return extracted_fills
def apply_extracted_fills(masked_texts, extracted_fills):
# split masked text into tokens, only splitting on spaces (not newlines)
tokens = [x.split(' ') for x in masked_texts]
n_expected = count_masks(masked_texts)
# replace each mask token with the corresponding fill
for idx, (text, fills, n) in enumerate(zip(tokens, extracted_fills, n_expected)):
if len(fills) < n:
tokens[idx] = []
else:
for fill_idx in range(n):
text[text.index(f"<extra_id_{fill_idx}>")] = fills[fill_idx]
# join tokens back into text
texts = [" ".join(x) for x in tokens]
return texts
def perturb_texts_(texts, span_length, pct, ceil_pct=False):
if not args.random_fills:
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for x in texts]
raw_fills = replace_masks(masked_texts)
extracted_fills = extract_fills(raw_fills)
perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills)
# Handle the fact that sometimes the model doesn't generate the right number of fills and we have to try again
attempts = 1
while '' in perturbed_texts:
idxs = [idx for idx, x in enumerate(perturbed_texts) if x == '']
print(f'WARNING: {len(idxs)} texts have no fills. Trying again [attempt {attempts}].')
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for idx, x in enumerate(texts) if idx in idxs]
raw_fills = replace_masks(masked_texts)
extracted_fills = extract_fills(raw_fills)
new_perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills)
for idx, x in zip(idxs, new_perturbed_texts):
perturbed_texts[idx] = x
attempts += 1
else:
if args.random_fills_tokens:
# tokenize base_tokenizer
tokens = base_tokenizer(texts, return_tensors="pt", padding=True).to(DEVICE)
valid_tokens = tokens.input_ids != base_tokenizer.pad_token_id
replace_pct = args.pct_words_masked * (args.span_length / (args.span_length + 2 * args.buffer_size))
# replace replace_pct of input_ids with random tokens
random_mask = torch.rand(tokens.input_ids.shape, device=DEVICE) < replace_pct
random_mask &= valid_tokens
random_tokens = torch.randint(0, base_tokenizer.vocab_size, (random_mask.sum(),), device=DEVICE)
# while any of the random tokens are special tokens, replace them with random non-special tokens
while any(base_tokenizer.decode(x) in base_tokenizer.all_special_tokens for x in random_tokens):
random_tokens = torch.randint(0, base_tokenizer.vocab_size, (random_mask.sum(),), device=DEVICE)
tokens.input_ids[random_mask] = random_tokens
perturbed_texts = base_tokenizer.batch_decode(tokens.input_ids, skip_special_tokens=True)
else:
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for x in texts]
perturbed_texts = masked_texts
# replace each <extra_id_*> with args.span_length random words from FILL_DICTIONARY
for idx, text in enumerate(perturbed_texts):
filled_text = text
for fill_idx in range(count_masks([text])[0]):
fill = random.sample(FILL_DICTIONARY, span_length)
filled_text = filled_text.replace(f"<extra_id_{fill_idx}>", " ".join(fill))
assert count_masks([filled_text])[0] == 0, "Failed to replace all masks"
perturbed_texts[idx] = filled_text
return perturbed_texts
def perturb_texts(texts, span_length, pct, ceil_pct=False):
chunk_size = args.chunk_size
if '11b' in mask_filling_model_name:
chunk_size //= 2
outputs = []
for i in tqdm.tqdm(range(0, len(texts), chunk_size), desc="Applying perturbations"):
outputs.extend(perturb_texts_(texts[i:i + chunk_size], span_length, pct, ceil_pct=ceil_pct))
return outputs
def drop_last_word(text):
return ' '.join(text.split(' ')[:-1])
def _openai_sample(p):
if args.dataset != 'pubmed': # keep Answer: prefix for pubmed
p = drop_last_word(p)
# sample from the openai model
kwargs = { "engine": args.openai_model, "max_tokens": 200 }
if args.do_top_p:
kwargs['top_p'] = args.top_p
r = openai.Completion.create(prompt=f"{p}", **kwargs)
return p + r['choices'][0].text
# sample from base_model using ****only**** the first 30 tokens in each example as context
def sample_from_model(texts, min_words=55, prompt_tokens=30):
# encode each text as a list of token ids
if args.dataset == 'pubmed':
texts = [t[:t.index(custom_datasets.SEPARATOR)] for t in texts]
all_encoded = base_tokenizer(texts, return_tensors="pt", padding=True).to(DEVICE)
else:
all_encoded = base_tokenizer(texts, return_tensors="pt", padding=True).to(DEVICE)
all_encoded = {key: value[:, :prompt_tokens] for key, value in all_encoded.items()}
if args.openai_model:
# decode the prefixes back into text
prefixes = base_tokenizer.batch_decode(all_encoded['input_ids'], skip_special_tokens=True)
pool = ThreadPool(args.batch_size)
decoded = pool.map(_openai_sample, prefixes)
else:
decoded = ['' for _ in range(len(texts))]
# sample from the model until we get a sample with at least min_words words for each example
# this is an inefficient way to do this (since we regenerate for all inputs if just one is too short), but it works
tries = 0
while (m := min(len(x.split()) for x in decoded)) < min_words:
if tries != 0:
print()
print(f"min words: {m}, needed {min_words}, regenerating (try {tries})")
sampling_kwargs = {}
if args.do_top_p:
sampling_kwargs['top_p'] = args.top_p
elif args.do_top_k:
sampling_kwargs['top_k'] = args.top_k
min_length = 50 if args.dataset in ['pubmed'] else 150
outputs = base_model.generate(**all_encoded, min_length=min_length, max_length=200, do_sample=True, **sampling_kwargs, pad_token_id=base_tokenizer.eos_token_id, eos_token_id=base_tokenizer.eos_token_id)
decoded = base_tokenizer.batch_decode(outputs, skip_special_tokens=True)
tries += 1
if args.openai_model:
global API_TOKEN_COUNTER
# count total number of tokens with GPT2_TOKENIZER
total_tokens = sum(len(GPT2_TOKENIZER.encode(x)) for x in decoded)
API_TOKEN_COUNTER += total_tokens
return decoded
def get_likelihood(logits, labels):
assert logits.shape[0] == 1
assert labels.shape[0] == 1
logits = logits.view(-1, logits.shape[-1])[:-1]
labels = labels.view(-1)[1:]
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
log_likelihood = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)).squeeze(-1)
return log_likelihood.mean()
# Get the log likelihood of each text under the base_model
def get_ll(text):
if args.openai_model:
kwargs = { "engine": args.openai_model, "temperature": 0, "max_tokens": 0, "echo": True, "logprobs": 0}
r = openai.Completion.create(prompt=f"<|endoftext|>{text}", **kwargs)
result = r['choices'][0]
tokens, logprobs = result["logprobs"]["tokens"][1:], result["logprobs"]["token_logprobs"][1:]
assert len(tokens) == len(logprobs), f"Expected {len(tokens)} logprobs, got {len(logprobs)}"
return np.mean(logprobs)
else:
with torch.no_grad():
tokenized = base_tokenizer(text, return_tensors="pt").to(DEVICE)
labels = tokenized.input_ids
return -base_model(**tokenized, labels=labels).loss.item()
def get_lls(texts):
if not args.openai_model:
return [get_ll(text) for text in texts]
else:
global API_TOKEN_COUNTER
# use GPT2_TOKENIZER to get total number of tokens
total_tokens = sum(len(GPT2_TOKENIZER.encode(text)) for text in texts)
API_TOKEN_COUNTER += total_tokens * 2 # multiply by two because OpenAI double-counts echo_prompt tokens
pool = ThreadPool(args.batch_size)
return pool.map(get_ll, texts)
# get the average rank of each observed token sorted by model likelihood
def get_rank(text, log=False):
assert args.openai_model is None, "get_rank not implemented for OpenAI models"
with torch.no_grad():
tokenized = base_tokenizer(text, return_tensors="pt").to(DEVICE)
logits = base_model(**tokenized).logits[:,:-1]
labels = tokenized.input_ids[:,1:]
# get rank of each label token in the model's likelihood ordering
matches = (logits.argsort(-1, descending=True) == labels.unsqueeze(-1)).nonzero()
assert matches.shape[1] == 3, f"Expected 3 dimensions in matches tensor, got {matches.shape}"
ranks, timesteps = matches[:,-1], matches[:,-2]
# make sure we got exactly one match for each timestep in the sequence
assert (timesteps == torch.arange(len(timesteps)).to(timesteps.device)).all(), "Expected one match per timestep"
ranks = ranks.float() + 1 # convert to 1-indexed rank
if log:
ranks = torch.log(ranks)
return ranks.float().mean().item()
# get average entropy of each token in the text
def get_entropy(text):
assert args.openai_model is None, "get_entropy not implemented for OpenAI models"
with torch.no_grad():
tokenized = base_tokenizer(text, return_tensors="pt").to(DEVICE)
logits = base_model(**tokenized).logits[:,:-1]
neg_entropy = F.softmax(logits, dim=-1) * F.log_softmax(logits, dim=-1)
return -neg_entropy.sum(-1).mean().item()
def get_roc_metrics(real_preds, sample_preds):
fpr, tpr, _ = roc_curve([0] * len(real_preds) + [1] * len(sample_preds), real_preds + sample_preds)
roc_auc = auc(fpr, tpr)
return fpr.tolist(), tpr.tolist(), float(roc_auc)
def get_precision_recall_metrics(real_preds, sample_preds):
precision, recall, _ = precision_recall_curve([0] * len(real_preds) + [1] * len(sample_preds), real_preds + sample_preds)
pr_auc = auc(recall, precision)
return precision.tolist(), recall.tolist(), float(pr_auc)
# save the ROC curve for each experiment, given a list of output dictionaries, one for each experiment, using colorblind-friendly colors
def save_roc_curves(experiments):
# first, clear plt
plt.clf()
for experiment, color in zip(experiments, COLORS):
metrics = experiment["metrics"]
plt.plot(metrics["fpr"], metrics["tpr"], label=f"{experiment['name']}, roc_auc={metrics['roc_auc']:.3f}", color=color)
# print roc_auc for this experiment
print(f"{experiment['name']} roc_auc: {metrics['roc_auc']:.3f}")
plt.plot([0, 1], [0, 1], color='black', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f'ROC Curves ({base_model_name} - {args.mask_filling_model_name})')
plt.legend(loc="lower right", fontsize=6)
plt.savefig(f"{SAVE_FOLDER}/roc_curves.png")
# save the histogram of log likelihoods in two side-by-side plots, one for real and real perturbed, and one for sampled and sampled perturbed
def save_ll_histograms(experiments):
# first, clear plt
plt.clf()
for experiment in experiments:
try:
results = experiment["raw_results"]
# plot histogram of sampled/perturbed sampled on left, original/perturbed original on right
plt.figure(figsize=(20, 6))
plt.subplot(1, 2, 1)
plt.hist([r["sampled_ll"] for r in results], alpha=0.5, bins='auto', label='sampled')
plt.hist([r["perturbed_sampled_ll"] for r in results], alpha=0.5, bins='auto', label='perturbed sampled')
plt.xlabel("log likelihood")
plt.ylabel('count')
plt.legend(loc='upper right')
plt.subplot(1, 2, 2)
plt.hist([r["original_ll"] for r in results], alpha=0.5, bins='auto', label='original')
plt.hist([r["perturbed_original_ll"] for r in results], alpha=0.5, bins='auto', label='perturbed original')
plt.xlabel("log likelihood")
plt.ylabel('count')
plt.legend(loc='upper right')
plt.savefig(f"{SAVE_FOLDER}/ll_histograms_{experiment['name']}.png")
except:
pass
# save the histograms of log likelihood ratios in two side-by-side plots, one for real and real perturbed, and one for sampled and sampled perturbed
def save_llr_histograms(experiments):
# first, clear plt
plt.clf()
for experiment in experiments:
try:
results = experiment["raw_results"]
# plot histogram of sampled/perturbed sampled on left, original/perturbed original on right
plt.figure(figsize=(20, 6))
plt.subplot(1, 2, 1)
# compute the log likelihood ratio for each result
for r in results:
r["sampled_llr"] = r["sampled_ll"] - r["perturbed_sampled_ll"]
r["original_llr"] = r["original_ll"] - r["perturbed_original_ll"]
plt.hist([r["sampled_llr"] for r in results], alpha=0.5, bins='auto', label='sampled')
plt.hist([r["original_llr"] for r in results], alpha=0.5, bins='auto', label='original')
plt.xlabel("log likelihood ratio")
plt.ylabel('count')
plt.legend(loc='upper right')
plt.savefig(f"{SAVE_FOLDER}/llr_histograms_{experiment['name']}.png")
except:
pass
def get_perturbation_results(span_length=10, n_perturbations=1, n_samples=500):
load_mask_model()
torch.manual_seed(0)
np.random.seed(0)
results = []
original_text = data["original"]
sampled_text = data["sampled"]
perturb_fn = functools.partial(perturb_texts, span_length=span_length, pct=args.pct_words_masked)
p_sampled_text = perturb_fn([x for x in sampled_text for _ in range(n_perturbations)])
p_original_text = perturb_fn([x for x in original_text for _ in range(n_perturbations)])
for _ in range(n_perturbation_rounds - 1):
try:
p_sampled_text, p_original_text = perturb_fn(p_sampled_text), perturb_fn(p_original_text)
except AssertionError:
break
assert len(p_sampled_text) == len(sampled_text) * n_perturbations, f"Expected {len(sampled_text) * n_perturbations} perturbed samples, got {len(p_sampled_text)}"
assert len(p_original_text) == len(original_text) * n_perturbations, f"Expected {len(original_text) * n_perturbations} perturbed samples, got {len(p_original_text)}"
for idx in range(len(original_text)):
results.append({
"original": original_text[idx],
"sampled": sampled_text[idx],
"perturbed_sampled": p_sampled_text[idx * n_perturbations: (idx + 1) * n_perturbations],
"perturbed_original": p_original_text[idx * n_perturbations: (idx + 1) * n_perturbations]
})
load_base_model()
for res in tqdm.tqdm(results, desc="Computing log likelihoods"):
p_sampled_ll = get_lls(res["perturbed_sampled"])
p_original_ll = get_lls(res["perturbed_original"])
res["original_ll"] = get_ll(res["original"])
res["sampled_ll"] = get_ll(res["sampled"])
res["all_perturbed_sampled_ll"] = p_sampled_ll
res["all_perturbed_original_ll"] = p_original_ll
res["perturbed_sampled_ll"] = np.mean(p_sampled_ll)
res["perturbed_original_ll"] = np.mean(p_original_ll)
res["perturbed_sampled_ll_std"] = np.std(p_sampled_ll) if len(p_sampled_ll) > 1 else 1
res["perturbed_original_ll_std"] = np.std(p_original_ll) if len(p_original_ll) > 1 else 1
return results
def run_perturbation_experiment(results, criterion, span_length=10, n_perturbations=1, n_samples=500):
# compute diffs with perturbed
predictions = {'real': [], 'samples': []}
for res in results:
if criterion == 'd':
predictions['real'].append(res['original_ll'] - res['perturbed_original_ll'])
predictions['samples'].append(res['sampled_ll'] - res['perturbed_sampled_ll'])
elif criterion == 'z':
if res['perturbed_original_ll_std'] == 0:
res['perturbed_original_ll_std'] = 1
print("WARNING: std of perturbed original is 0, setting to 1")
print(f"Number of unique perturbed original texts: {len(set(res['perturbed_original']))}")
print(f"Original text: {res['original']}")
if res['perturbed_sampled_ll_std'] == 0:
res['perturbed_sampled_ll_std'] = 1
print("WARNING: std of perturbed sampled is 0, setting to 1")
print(f"Number of unique perturbed sampled texts: {len(set(res['perturbed_sampled']))}")
print(f"Sampled text: {res['sampled']}")
predictions['real'].append((res['original_ll'] - res['perturbed_original_ll']) / res['perturbed_original_ll_std'])
predictions['samples'].append((res['sampled_ll'] - res['perturbed_sampled_ll']) / res['perturbed_sampled_ll_std'])
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
name = f'perturbation_{n_perturbations}_{criterion}'
print(f"{name} ROC AUC: {roc_auc}, PR AUC: {pr_auc}")
return {
'name': name,
'predictions': predictions,
'info': {
'pct_words_masked': args.pct_words_masked,
'span_length': span_length,
'n_perturbations': n_perturbations,
'n_samples': n_samples,
},
'raw_results': results,
'metrics': {
'roc_auc': roc_auc,
'fpr': fpr,
'tpr': tpr,
},
'pr_metrics': {
'pr_auc': pr_auc,
'precision': p,
'recall': r,
},
'loss': 1 - pr_auc,
}
def run_baseline_threshold_experiment(criterion_fn, name, n_samples=500):
torch.manual_seed(0)
np.random.seed(0)
results = []
for batch in tqdm.tqdm(range(n_samples // batch_size), desc=f"Computing {name} criterion"):
original_text = data["original"][batch * batch_size:(batch + 1) * batch_size]
sampled_text = data["sampled"][batch * batch_size:(batch + 1) * batch_size]
for idx in range(len(original_text)):
results.append({
"original": original_text[idx],
"original_crit": criterion_fn(original_text[idx]),
"sampled": sampled_text[idx],
"sampled_crit": criterion_fn(sampled_text[idx]),
})
# compute prediction scores for real/sampled passages
predictions = {
'real': [x["original_crit"] for x in results],
'samples': [x["sampled_crit"] for x in results],
}
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
print(f"{name}_threshold ROC AUC: {roc_auc}, PR AUC: {pr_auc}")
return {
'name': f'{name}_threshold',
'predictions': predictions,
'info': {
'n_samples': n_samples,
},
'raw_results': results,
'metrics': {
'roc_auc': roc_auc,
'fpr': fpr,
'tpr': tpr,
},
'pr_metrics': {
'pr_auc': pr_auc,
'precision': p,
'recall': r,
},
'loss': 1 - pr_auc,
}
# strip newlines from each example; replace one or more newlines with a single space
def strip_newlines(text):
return ' '.join(text.split())
# trim to shorter length
def trim_to_shorter_length(texta, textb):
# truncate to shorter of o and s
shorter_length = min(len(texta.split(' ')), len(textb.split(' ')))
texta = ' '.join(texta.split(' ')[:shorter_length])
textb = ' '.join(textb.split(' ')[:shorter_length])
return texta, textb
def truncate_to_substring(text, substring, idx_occurrence):
# truncate everything after the idx_occurrence occurrence of substring
assert idx_occurrence > 0, 'idx_occurrence must be > 0'
idx = -1
for _ in range(idx_occurrence):
idx = text.find(substring, idx + 1)
if idx == -1:
return text
return text[:idx]
def generate_samples(raw_data, batch_size):
torch.manual_seed(42)
np.random.seed(42)
data = {
"original": [],
"sampled": [],
}
for batch in range(len(raw_data) // batch_size):
print('Generating samples for batch', batch, 'of', len(raw_data) // batch_size)
original_text = raw_data[batch * batch_size:(batch + 1) * batch_size]
sampled_text = sample_from_model(original_text, min_words=30 if args.dataset in ['pubmed'] else 55)
for o, s in zip(original_text, sampled_text):
if args.dataset == 'pubmed':
s = truncate_to_substring(s, 'Question:', 2)
o = o.replace(custom_datasets.SEPARATOR, ' ')
o, s = trim_to_shorter_length(o, s)
# add to the data
data["original"].append(o)
data["sampled"].append(s)
if args.pre_perturb_pct > 0:
print(f'APPLYING {args.pre_perturb_pct}, {args.pre_perturb_span_length} PRE-PERTURBATIONS')
load_mask_model()
data["sampled"] = perturb_texts(data["sampled"], args.pre_perturb_span_length, args.pre_perturb_pct, ceil_pct=True)
load_base_model()
return data
def generate_data(dataset, key):
# load data
if dataset in custom_datasets.DATASETS:
data = custom_datasets.load(dataset, cache_dir)
else:
data = datasets.load_dataset(dataset, split='train', cache_dir=cache_dir)[key]
# get unique examples, strip whitespace, and remove newlines
# then take just the long examples, shuffle, take the first 5,000 to tokenize to save time
# then take just the examples that are <= 512 tokens (for the mask model)
# then generate n_samples samples
# remove duplicates from the data
data = list(dict.fromkeys(data)) # deterministic, as opposed to set()
# strip whitespace around each example
data = [x.strip() for x in data]
# remove newlines from each example
data = [strip_newlines(x) for x in data]
# try to keep only examples with > 250 words
if dataset in ['writing', 'squad', 'xsum']:
long_data = [x for x in data if len(x.split()) > 250]
if len(long_data) > 0:
data = long_data
random.seed(0)
random.shuffle(data)
data = data[:5_000]
# keep only examples with <= 512 tokens according to mask_tokenizer
# this step has the extra effect of removing examples with low-quality/garbage content
tokenized_data = preproc_tokenizer(data)
data = [x for x, y in zip(data, tokenized_data["input_ids"]) if len(y) <= 512]
# print stats about remainining data
print(f"Total number of samples: {len(data)}")
print(f"Average number of words: {np.mean([len(x.split()) for x in data])}")
return generate_samples(data[:n_samples], batch_size=batch_size)
def load_base_model_and_tokenizer(name):
if args.openai_model is None:
print(f'Loading BASE model {args.base_model_name}...')
base_model_kwargs = {}
if 'gpt-j' in name or 'neox' in name:
base_model_kwargs.update(dict(torch_dtype=torch.float16))
if 'gpt-j' in name:
base_model_kwargs.update(dict(revision='float16'))
base_model = transformers.AutoModelForCausalLM.from_pretrained(name, **base_model_kwargs, cache_dir=cache_dir)
else:
base_model = None
optional_tok_kwargs = {}
if "facebook/opt-" in name:
print("Using non-fast tokenizer for OPT")
optional_tok_kwargs['fast'] = False
if args.dataset in ['pubmed']:
optional_tok_kwargs['padding_side'] = 'left'
base_tokenizer = transformers.AutoTokenizer.from_pretrained(name, **optional_tok_kwargs, cache_dir=cache_dir)
base_tokenizer.pad_token_id = base_tokenizer.eos_token_id
return base_model, base_tokenizer
def eval_supervised(data, model):
print(f'Beginning supervised evaluation with {model}...')
detector = transformers.AutoModelForSequenceClassification.from_pretrained(model, cache_dir=cache_dir).to(DEVICE)
tokenizer = transformers.AutoTokenizer.from_pretrained(model, cache_dir=cache_dir)
real, fake = data['original'], data['sampled']
with torch.no_grad():
# get predictions for real
real_preds = []
for batch in tqdm.tqdm(range(len(real) // batch_size), desc="Evaluating real"):
batch_real = real[batch * batch_size:(batch + 1) * batch_size]
batch_real = tokenizer(batch_real, padding=True, truncation=True, max_length=512, return_tensors="pt").to(DEVICE)
real_preds.extend(detector(**batch_real).logits.softmax(-1)[:,0].tolist())
# get predictions for fake
fake_preds = []
for batch in tqdm.tqdm(range(len(fake) // batch_size), desc="Evaluating fake"):
batch_fake = fake[batch * batch_size:(batch + 1) * batch_size]
batch_fake = tokenizer(batch_fake, padding=True, truncation=True, max_length=512, return_tensors="pt").to(DEVICE)
fake_preds.extend(detector(**batch_fake).logits.softmax(-1)[:,0].tolist())
predictions = {
'real': real_preds,
'samples': fake_preds,
}
fpr, tpr, roc_auc = get_roc_metrics(real_preds, fake_preds)
p, r, pr_auc = get_precision_recall_metrics(real_preds, fake_preds)
print(f"{model} ROC AUC: {roc_auc}, PR AUC: {pr_auc}")
# free GPU memory
del detector
torch.cuda.empty_cache()
return {
'name': model,
'predictions': predictions,
'info': {
'n_samples': n_samples,
},
'metrics': {
'roc_auc': roc_auc,
'fpr': fpr,
'tpr': tpr,
},
'pr_metrics': {
'pr_auc': pr_auc,
'precision': p,
'recall': r,
},
'loss': 1 - pr_auc,
}
if __name__ == '__main__':
DEVICE = "cuda"
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default="xsum")
parser.add_argument('--dataset_key', type=str, default="document")
parser.add_argument('--pct_words_masked', type=float, default=0.3) # pct masked is actually pct_words_masked * (span_length / (span_length + 2 * buffer_size))
parser.add_argument('--span_length', type=int, default=2)
parser.add_argument('--n_samples', type=int, default=200)
parser.add_argument('--n_perturbation_list', type=str, default="1,10")
parser.add_argument('--n_perturbation_rounds', type=int, default=1)
parser.add_argument('--base_model_name', type=str, default="gpt2-medium")
parser.add_argument('--scoring_model_name', type=str, default="")
parser.add_argument('--mask_filling_model_name', type=str, default="t5-large")
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--chunk_size', type=int, default=20)
parser.add_argument('--n_similarity_samples', type=int, default=20)
parser.add_argument('--int8', action='store_true')
parser.add_argument('--half', action='store_true')
parser.add_argument('--base_half', action='store_true')
parser.add_argument('--do_top_k', action='store_true')
parser.add_argument('--top_k', type=int, default=40)
parser.add_argument('--do_top_p', action='store_true')
parser.add_argument('--top_p', type=float, default=0.96)
parser.add_argument('--output_name', type=str, default="")
parser.add_argument('--openai_model', type=str, default=None)
parser.add_argument('--openai_key', type=str)
parser.add_argument('--baselines_only', action='store_true')
parser.add_argument('--skip_baselines', action='store_true')
parser.add_argument('--buffer_size', type=int, default=1)
parser.add_argument('--mask_top_p', type=float, default=1.0)
parser.add_argument('--pre_perturb_pct', type=float, default=0.0)
parser.add_argument('--pre_perturb_span_length', type=int, default=5)
parser.add_argument('--random_fills', action='store_true')
parser.add_argument('--random_fills_tokens', action='store_true')
parser.add_argument('--cache_dir', type=str, default="~/.cache")
args = parser.parse_args()
API_TOKEN_COUNTER = 0
if args.openai_model is not None:
import openai
assert args.openai_key is not None, "Must provide OpenAI API key as --openai_key"
openai.api_key = args.openai_key
START_DATE = datetime.datetime.now().strftime('%Y-%m-%d')
START_TIME = datetime.datetime.now().strftime('%H-%M-%S-%f')
# define SAVE_FOLDER as the timestamp - base model name - mask filling model name
# create it if it doesn't exist
precision_string = "int8" if args.int8 else ("fp16" if args.half else "fp32")
sampling_string = "top_k" if args.do_top_k else ("top_p" if args.do_top_p else "temp")
output_subfolder = f"{args.output_name}/" if args.output_name else ""
if args.openai_model is None:
base_model_name = args.base_model_name.replace('/', '_')
else:
base_model_name = "openai-" + args.openai_model.replace('/', '_')
scoring_model_string = (f"-{args.scoring_model_name}" if args.scoring_model_name else "").replace('/', '_')
SAVE_FOLDER = f"tmp_results/{output_subfolder}{base_model_name}{scoring_model_string}-{args.mask_filling_model_name}-{sampling_string}/{START_DATE}-{START_TIME}-{precision_string}-{args.pct_words_masked}-{args.n_perturbation_rounds}-{args.dataset}-{args.n_samples}"
if not os.path.exists(SAVE_FOLDER):
os.makedirs(SAVE_FOLDER)
print(f"Saving results to absolute path: {os.path.abspath(SAVE_FOLDER)}")
# write args to file
with open(os.path.join(SAVE_FOLDER, "args.json"), "w") as f:
json.dump(args.__dict__, f, indent=4)
mask_filling_model_name = args.mask_filling_model_name
n_samples = args.n_samples
batch_size = args.batch_size
n_perturbation_list = [int(x) for x in args.n_perturbation_list.split(",")]
n_perturbation_rounds = args.n_perturbation_rounds
n_similarity_samples = args.n_similarity_samples
cache_dir = args.cache_dir
os.environ["XDG_CACHE_HOME"] = cache_dir
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
print(f"Using cache dir {cache_dir}")
GPT2_TOKENIZER = transformers.GPT2Tokenizer.from_pretrained('gpt2', cache_dir=cache_dir)
# generic generative model
base_model, base_tokenizer = load_base_model_and_tokenizer(args.base_model_name)
# mask filling t5 model
if not args.baselines_only and not args.random_fills:
int8_kwargs = {}
half_kwargs = {}
if args.int8:
int8_kwargs = dict(load_in_8bit=True, device_map='auto', torch_dtype=torch.bfloat16)
elif args.half:
half_kwargs = dict(torch_dtype=torch.bfloat16)
print(f'Loading mask filling model {mask_filling_model_name}...')
mask_model = transformers.AutoModelForSeq2SeqLM.from_pretrained(mask_filling_model_name, **int8_kwargs, **half_kwargs, cache_dir=cache_dir)
try:
n_positions = mask_model.config.n_positions
except AttributeError:
n_positions = 512
else:
n_positions = 512
preproc_tokenizer = transformers.AutoTokenizer.from_pretrained('t5-small', model_max_length=512, cache_dir=cache_dir)
mask_tokenizer = transformers.AutoTokenizer.from_pretrained(mask_filling_model_name, model_max_length=n_positions, cache_dir=cache_dir)
if args.dataset in ['english', 'german']:
preproc_tokenizer = mask_tokenizer
load_base_model()
print(f'Loading dataset {args.dataset}...')
data = generate_data(args.dataset, args.dataset_key)
if args.random_fills:
FILL_DICTIONARY = set()
for texts in data.values():
for text in texts:
FILL_DICTIONARY.update(text.split())
FILL_DICTIONARY = sorted(list(FILL_DICTIONARY))
if args.scoring_model_name:
print(f'Loading SCORING model {args.scoring_model_name}...')
del base_model
del base_tokenizer
torch.cuda.empty_cache()
base_model, base_tokenizer = load_base_model_and_tokenizer(args.scoring_model_name)
load_base_model() # Load again because we've deleted/replaced the old model
# write the data to a json file in the save folder
with open(os.path.join(SAVE_FOLDER, "raw_data.json"), "w") as f:
print(f"Writing raw data to {os.path.join(SAVE_FOLDER, 'raw_data.json')}")
json.dump(data, f)
if not args.skip_baselines:
baseline_outputs = [run_baseline_threshold_experiment(get_ll, "likelihood", n_samples=n_samples)]
if args.openai_model is None:
rank_criterion = lambda text: -get_rank(text, log=False)
baseline_outputs.append(run_baseline_threshold_experiment(rank_criterion, "rank", n_samples=n_samples))
logrank_criterion = lambda text: -get_rank(text, log=True)
baseline_outputs.append(run_baseline_threshold_experiment(logrank_criterion, "log_rank", n_samples=n_samples))
entropy_criterion = lambda text: get_entropy(text)
baseline_outputs.append(run_baseline_threshold_experiment(entropy_criterion, "entropy", n_samples=n_samples))
baseline_outputs.append(eval_supervised(data, model='roberta-base-openai-detector'))
baseline_outputs.append(eval_supervised(data, model='roberta-large-openai-detector'))
outputs = []
if not args.baselines_only:
# run perturbation experiments
for n_perturbations in n_perturbation_list:
perturbation_results = get_perturbation_results(args.span_length, n_perturbations, n_samples)
for perturbation_mode in ['d', 'z']:
output = run_perturbation_experiment(
perturbation_results, perturbation_mode, span_length=args.span_length, n_perturbations=n_perturbations, n_samples=n_samples)
outputs.append(output)
with open(os.path.join(SAVE_FOLDER, f"perturbation_{n_perturbations}_{perturbation_mode}_results.json"), "w") as f:
json.dump(output, f)
if not args.skip_baselines:
# write likelihood threshold results to a file
with open(os.path.join(SAVE_FOLDER, f"likelihood_threshold_results.json"), "w") as f:
json.dump(baseline_outputs[0], f)
if args.openai_model is None:
# write rank threshold results to a file
with open(os.path.join(SAVE_FOLDER, f"rank_threshold_results.json"), "w") as f:
json.dump(baseline_outputs[1], f)
# write log rank threshold results to a file
with open(os.path.join(SAVE_FOLDER, f"logrank_threshold_results.json"), "w") as f:
json.dump(baseline_outputs[2], f)
# write entropy threshold results to a file
with open(os.path.join(SAVE_FOLDER, f"entropy_threshold_results.json"), "w") as f:
json.dump(baseline_outputs[3], f)
# write supervised results to a file
with open(os.path.join(SAVE_FOLDER, f"roberta-base-openai-detector_results.json"), "w") as f:
json.dump(baseline_outputs[-2], f)
# write supervised results to a file
with open(os.path.join(SAVE_FOLDER, f"roberta-large-openai-detector_results.json"), "w") as f:
json.dump(baseline_outputs[-1], f)
outputs += baseline_outputs
save_roc_curves(outputs)
save_ll_histograms(outputs)
save_llr_histograms(outputs)
# move results folder from tmp_results/ to results/, making sure necessary directories exist
new_folder = SAVE_FOLDER.replace("tmp_results", "results")
if not os.path.exists(os.path.dirname(new_folder)):
os.makedirs(os.path.dirname(new_folder))
os.rename(SAVE_FOLDER, new_folder)
print(f"Used an *estimated* {API_TOKEN_COUNTER} API tokens (may be inaccurate)") |