Update app.py
Browse files- README.md +3 -3
- app.py +132 -47
- requirements.txt +3 -1
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: Gemma 2 Baku 2B Instruct
|
3 |
+
emoji: 🐼
|
4 |
colorFrom: yellow
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
app.py
CHANGED
@@ -1,63 +1,148 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
temperature=temperature,
|
35 |
-
|
36 |
-
)
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
import spaces
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
5 |
+
from threading import Thread
|
6 |
|
7 |
+
|
8 |
+
# Set an environment variable
|
9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
+
|
11 |
+
model_icon = "🐼"
|
12 |
+
model_name = "Gemma 2 Baku 2B Instruct"
|
13 |
+
model_url = "https://huggingface.co/rinna/gemma-2-baku-2b-it"
|
14 |
+
model_id = "rinna/gemma-2-baku-2b-it"
|
15 |
+
base_model_url = "https://huggingface.co/google/gemma-2-2b"
|
16 |
+
base_model_name = "Gemma 2 2B"
|
17 |
+
press_url = "https://rinna.co.jp/news/2024/07/20240725.html"
|
18 |
+
logo_url = "https://huggingface.co/rinna/gemma-2-baku-2b/resolve/main/rinna.png"
|
19 |
+
|
20 |
+
LICENSE = """
|
21 |
+
---
|
22 |
+
<div>
|
23 |
+
<p>License: <a href="https://ai.google.dev/gemma/terms">Gemma Terms of Use </a><p>
|
24 |
+
<p>This space is implemented based on <a href="https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b">ysharma/Chat_with_Meta_llama3_8b</a>.</p>
|
25 |
+
</div>
|
26 |
"""
|
27 |
+
|
28 |
+
|
29 |
+
DESCRIPTION = f"""
|
30 |
+
<div>
|
31 |
+
<p>{model_icon} <a href="{model_url}"><b>{model_name}</b> ({model_id})</a>は、<a href="https://rinna.co.jp">rinna株式会社</a>が<a href="{base_model_url}">{base_model_name}</a>に日本語継続事前学習およびインストラクションチューニングを行った大規模言語モデルです.{base_model_name}の優れたパフォーマンスを日本語に引き継いでおり、日本語のチャットにおいて高い性能を示しています。</p>
|
32 |
+
<p>🤖 このデモでは、{model_name}とチャットを行うことが可能です。</p>
|
33 |
+
<p>📄 モデルの詳細については、<a href="{press_url}">プレスリリース</a>、および、<a href="https://rinnakk.github.io/research/benchmarks/lm/index.html">ベンチマーク</a>をご覧ください。お問い合わせは<a href="https://rinna.co.jp/inquiry/">こちら</a>までどうぞ。</p>
|
34 |
+
</div>
|
35 |
"""
|
|
|
36 |
|
37 |
+
PLACEHOLDER = f"""
|
38 |
+
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
39 |
+
<img src="{logo_url}" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
|
40 |
+
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">{model_name}</h1>
|
41 |
+
</div>
|
42 |
+
"""
|
43 |
|
44 |
+
css = """
|
45 |
+
h1 {
|
46 |
+
text-align: center;
|
47 |
+
display: block;
|
48 |
+
}
|
49 |
+
#duplicate-button {
|
50 |
+
margin: auto;
|
51 |
+
color: white;
|
52 |
+
background: #1565c0;
|
53 |
+
border-radius: 100vh;
|
54 |
+
}
|
55 |
+
"""
|
56 |
+
|
57 |
+
|
58 |
+
# Load the tokenizer and model
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
@spaces.GPU(duration=120)
|
64 |
+
def chat_llama3_8b(message: str,
|
65 |
+
history: list,
|
66 |
+
temperature: float,
|
67 |
+
max_new_tokens: int
|
68 |
+
) -> str:
|
69 |
+
"""
|
70 |
+
Generate a streaming response using the llama3-8b model.
|
71 |
+
Args:
|
72 |
+
message (str): The input message.
|
73 |
+
history (list): The conversation history used by ChatInterface.
|
74 |
+
temperature (float): The temperature for generating the response.
|
75 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
76 |
+
Returns:
|
77 |
+
str: The generated response.
|
78 |
+
"""
|
79 |
+
conversation = []
|
80 |
+
for user, assistant in history:
|
81 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
82 |
+
conversation.append({"role": "user", "content": message})
|
83 |
|
84 |
+
# Need to set add_generation_prompt=True to ensure the model generates the response.
|
85 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
86 |
+
|
87 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
88 |
|
89 |
+
generate_kwargs = dict(
|
90 |
+
input_ids=input_ids,
|
91 |
+
streamer=streamer,
|
92 |
+
max_new_tokens=max_new_tokens,
|
93 |
+
do_sample=True,
|
94 |
temperature=temperature,
|
95 |
+
repetition_penalty=1.1,
|
96 |
+
)
|
97 |
+
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
|
98 |
+
if temperature == 0:
|
99 |
+
generate_kwargs['do_sample'] = False
|
100 |
+
|
101 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
102 |
+
t.start()
|
103 |
|
104 |
+
outputs = []
|
105 |
+
for text in streamer:
|
106 |
+
outputs.append(text)
|
107 |
+
yield "".join(outputs)
|
108 |
+
|
109 |
|
110 |
+
# Gradio block
|
111 |
+
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
with gr.Blocks(fill_height=True, css=css) as demo:
|
114 |
+
|
115 |
+
gr.Markdown(DESCRIPTION)
|
116 |
+
gr.ChatInterface(
|
117 |
+
fn=chat_llama3_8b,
|
118 |
+
chatbot=chatbot,
|
119 |
+
fill_height=True,
|
120 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ パラメータ", open=False, render=False),
|
121 |
+
additional_inputs=[
|
122 |
+
gr.Slider(minimum=0,
|
123 |
+
maximum=1,
|
124 |
+
step=0.05,
|
125 |
+
value=0.9,
|
126 |
+
label="生成時におけるサンプリングの温度(ランダム性)",
|
127 |
+
render=False),
|
128 |
+
gr.Slider(minimum=128,
|
129 |
+
maximum=4096,
|
130 |
+
step=1,
|
131 |
+
value=512,
|
132 |
+
label="生成したい最大のトークン数",
|
133 |
+
render=False),
|
134 |
+
],
|
135 |
+
examples=[
|
136 |
+
["日本で有名なものと言えば"],
|
137 |
+
["ネコ: 「お腹が減ったニャ」\nから始まる物語を書いて"],
|
138 |
+
["C言語で素数を判定するコードを書いて"],
|
139 |
+
["人工知能とは何ですか"],
|
140 |
+
],
|
141 |
+
cache_examples=False,
|
142 |
+
)
|
143 |
+
|
144 |
+
gr.Markdown(LICENSE)
|
145 |
+
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
transformers
|
3 |
+
SentencePiece
|