import gradio as gr import pandas as pd from datasets import load_dataset, Dataset from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments import torch import os import matplotlib.pyplot as plt from huggingface_hub import HfApi # ここを修正しました import json import io from datetime import datetime # グローバル変数で検出された列を保存 columns = [] # データセットをロードする関数 def load_data(dataset_name): global columns try: # Hugging Faceのデータセットをロード dataset = load_dataset(dataset_name) # 最初のデータをプレビューとして表示 df = pd.DataFrame(dataset['train']) # 列名を検出 columns = df.columns.tolist() return columns, df.head().to_string(index=False) except Exception as e: return f"エラーが発生しました: {str(e)}" # 列の選択が正しいかを検証 def validate_columns(prompt_col, description_col): if prompt_col not in columns or description_col not in columns: return False return True # モデル訓練関数 def train_model(dataset_name, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col, hf_token): try: # 列の検証 if not validate_columns(prompt_col, description_col): return "無効な列選択です。データセット内の列を確認してください。" # Hugging Faceのデータセットをロード dataset = load_dataset(dataset_name) # 訓練データを取得 df = pd.DataFrame(dataset['train']) # データのプレビュー preview = df.head().to_string(index=False) # 訓練用テキストの準備 df['text'] = df[prompt_col] + ': ' + df[description_col] train_dataset = Dataset.from_pandas(df[['text']]) # GPT-2のトークナイザーとモデルを初期化 tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) # 必要であればパディングトークンを追加 if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model.resize_token_embeddings(len(tokenizer)) # データのトークナイズ関数 def tokenize_function(examples): tokens = tokenizer(examples['text'], padding="max_length", truncation=True, max_length=128) tokens['labels'] = tokens['input_ids'].copy() return tokens tokenized_datasets = train_dataset.map(tokenize_function, batched=True) # 訓練のための設定 training_args = TrainingArguments( output_dir=output_dir, overwrite_output_dir=True, num_train_epochs=int(epochs), per_device_train_batch_size=int(batch_size), per_device_eval_batch_size=int(batch_size), warmup_steps=1000, weight_decay=0.01, learning_rate=float(learning_rate), logging_dir="./logs", logging_steps=10, save_steps=500, save_total_limit=2, evaluation_strategy="steps", eval_steps=500, load_best_model_at_end=True, metric_for_best_model="eval_loss" ) # Trainer設定 trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets, eval_dataset=tokenized_datasets, ) # 訓練開始 trainer.train() eval_results = trainer.evaluate() # Fine-tunedモデルを保存 model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) # 訓練損失と評価損失のグラフ生成 train_loss = [x['loss'] for x in trainer.state.log_history if 'loss' in x] eval_loss = [x['eval_loss'] for x in trainer.state.log_history if 'eval_loss' in x] plt.plot(train_loss, label='訓練損失') plt.plot(eval_loss, label='評価損失') plt.xlabel('ステップ数') plt.ylabel('損失') plt.title('訓練と評価の損失') plt.legend() plt.savefig(os.path.join(output_dir, 'training_eval_loss.png')) # モデルのHuggingFaceにアップロード hf_api = HfApi() hf_api.upload_folder( folder_path=output_dir, path_in_repo=".", repo_id="sakaltcommunity/grape-small", token=hf_token ) return f"訓練が完了しました。\nデータのプレビュー:\n{preview}", eval_results except Exception as e: return f"エラーが発生しました: {str(e)}" # テキスト生成関数 def generate_text(prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma, batch_size): try: model_name = "./fine-tuned-gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) if use_comma: prompt = prompt.replace('.', ',') inputs = tokenizer(prompt, return_tensors="pt", padding=True) attention_mask = inputs.attention_mask outputs = model.generate( inputs.input_ids, attention_mask=attention_mask, max_length=int(max_length), temperature=float(temperature), top_k=int(top_k), top_p=float(top_p), repetition_penalty=float(repetition_penalty), num_return_sequences=int(batch_size), pad_token_id=tokenizer.eos_token_id ) return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] except Exception as e: return f"エラーが発生しました: {str(e)}" # UI設定 with gr.Blocks() as ui: with gr.Row(): dataset_name = gr.Textbox(label="データセット名", value="imdb") # ここにデータセット名を入力 model_name = gr.Textbox(label="モデル名", value="gpt2") epochs = gr.Number(label="エポック数", value=3, minimum=1) batch_size = gr.Number(label="バッチサイズ", value=4, minimum=1) learning_rate = gr.Number(label="学習率", value=5e-5, minimum=1e-7, maximum=1e-2, step=1e-7) output_dir = gr.Textbox(label="出力ディレクトリ", value="./output") prompt_col = gr.Textbox(label="プロンプト列名", value="text") # 例:IMDBのレビュー列名 description_col = gr.Textbox(label="説明列名", value="label") # 例:IMDBのラベル列名 hf_token = gr.Textbox(label="Hugging Face アクセストークン") with gr.Row(): validate_button = gr.Button("列検証") output = gr.Textbox(label="出力") validate_button.click( load_data, inputs=[dataset_name], outputs=[output] ) with gr.Row(): train_button = gr.Button("訓練開始") result_output = gr.Textbox(label="訓練結果", lines=20) train_button.click( train_model, inputs=[dataset_name, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col, hf_token], outputs=[result_output] ) ui.launch()