SakshiRathi77
commited on
Upload 7 files
Browse files- YOLOv9_Object_Detection_Tracking_and_Counting.py +167 -0
- train_dual.py +644 -0
- train_triple.py +636 -0
- val.py +389 -0
- val_dual.py +393 -0
- val_triple.py +391 -0
- view.py +1 -0
YOLOv9_Object_Detection_Tracking_and_Counting.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from base64 import b64encode
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
import supervision as sv
|
6 |
+
from models.common import DetectMultiBackend, AutoShape
|
7 |
+
from utils.torch_utils import select_device
|
8 |
+
from utils.general import set_logging
|
9 |
+
from supervision import Detections as BaseDetections
|
10 |
+
from supervision.config import CLASS_NAME_DATA_FIELD
|
11 |
+
from IPython.display import HTML
|
12 |
+
|
13 |
+
# Extending Supervision's `Detections` to Handle YOLOv9 Results
|
14 |
+
class ExtendedDetections(BaseDetections):
|
15 |
+
@classmethod
|
16 |
+
def from_yolov9(cls, yolov9_results) -> 'ExtendedDetections':
|
17 |
+
xyxy, confidences, class_ids = [], [], []
|
18 |
+
|
19 |
+
for det in yolov9_results.pred:
|
20 |
+
for *xyxy_coords, conf, cls_id in reversed(det):
|
21 |
+
xyxy.append(torch.stack(xyxy_coords).cpu().numpy())
|
22 |
+
confidences.append(float(conf))
|
23 |
+
class_ids.append(int(cls_id))
|
24 |
+
|
25 |
+
class_names = np.array([yolov9_results.names[i] for i in class_ids])
|
26 |
+
|
27 |
+
if not xyxy:
|
28 |
+
return cls.empty()
|
29 |
+
|
30 |
+
return cls(
|
31 |
+
xyxy=np.vstack(xyxy),
|
32 |
+
confidence=np.array(confidences),
|
33 |
+
class_id=np.array(class_ids),
|
34 |
+
data={CLASS_NAME_DATA_FIELD: class_names},
|
35 |
+
)
|
36 |
+
|
37 |
+
# Loading the Model
|
38 |
+
set_logging(verbose=False)
|
39 |
+
device = select_device('cpu')
|
40 |
+
model = DetectMultiBackend(weights='best.pt', device=device, data='data/coco.yaml', fuse=True)
|
41 |
+
model = AutoShape(model)
|
42 |
+
|
43 |
+
# Function to Set YOLOv9 Post-processing Parameters
|
44 |
+
def prepare_yolov9(model, conf=0.2, iou=0.7, classes=None, agnostic_nms=False, max_det=1000):
|
45 |
+
model.conf = conf
|
46 |
+
model.iou = iou
|
47 |
+
model.classes = classes
|
48 |
+
model.agnostic = agnostic_nms
|
49 |
+
model.max_det = max_det
|
50 |
+
return model
|
51 |
+
|
52 |
+
# Function to Play Videos
|
53 |
+
def play(filename, width=500):
|
54 |
+
html = ''
|
55 |
+
video = open(filename, 'rb').read()
|
56 |
+
src = 'data:video/mp4;base64,' + b64encode(video).decode()
|
57 |
+
html += fr'<video width=500 controls autoplay loop><source src="%s" type="video/mp4"></video>' % src
|
58 |
+
return HTML(html)
|
59 |
+
|
60 |
+
# Constants
|
61 |
+
SOURCE_VIDEO_PATH = "test.mp4"
|
62 |
+
TARGET_VIDEO_PATH = "output.mp4"
|
63 |
+
|
64 |
+
# Simple Object Detection with YOLOv9 and Supervision
|
65 |
+
def prepare_model_and_video_info(model, config, source_path):
|
66 |
+
model = prepare_yolov9(model, **config)
|
67 |
+
video_info = sv.VideoInfo.from_video_path(source_path)
|
68 |
+
return model, video_info
|
69 |
+
|
70 |
+
def setup_annotator():
|
71 |
+
return sv.BoundingBoxAnnotator(thickness=2)
|
72 |
+
|
73 |
+
def simple_annotate_frame(frame, model, annotator):
|
74 |
+
frame_rgb = frame[..., ::-1]
|
75 |
+
results = model(frame_rgb, size=640, augment=False)
|
76 |
+
detections = ExtendedDetections.from_yolov9(results)
|
77 |
+
|
78 |
+
# Display the frame with detections using cv2.imshow
|
79 |
+
annotated_frame = annotator.annotate(scene=frame.copy(), detections=detections)
|
80 |
+
cv2.imshow("Detections", annotated_frame)
|
81 |
+
cv2.waitKey(1) # Adjust the delay as needed
|
82 |
+
|
83 |
+
return annotated_frame
|
84 |
+
|
85 |
+
def simple_process_video(model, config=dict(conf=0.1, iou=0.45, classes=None,), source_path=SOURCE_VIDEO_PATH, target_path=TARGET_VIDEO_PATH):
|
86 |
+
model, _ = prepare_model_and_video_info(model, config, source_path)
|
87 |
+
annotator = setup_annotator()
|
88 |
+
|
89 |
+
def callback(frame: np.ndarray, index: int) -> np.ndarray:
|
90 |
+
return simple_annotate_frame(frame, model, annotator)
|
91 |
+
|
92 |
+
sv.process_video(source_path=source_path, target_path=target_path, callback=callback)
|
93 |
+
|
94 |
+
# Advanced Detection, Tracking, and Counting with YOLOv9 and Supervision
|
95 |
+
def setup_model_and_video_info(model, config, source_path):
|
96 |
+
model = prepare_yolov9(model, **config)
|
97 |
+
video_info = sv.VideoInfo.from_video_path(source_path)
|
98 |
+
return model, video_info
|
99 |
+
|
100 |
+
def create_byte_tracker(video_info):
|
101 |
+
return sv.ByteTrack(track_thresh=0.25, track_buffer=250, match_thresh=0.95, frame_rate=video_info.fps)
|
102 |
+
|
103 |
+
def setup_annotators():
|
104 |
+
bounding_box_annotator = sv.BoundingBoxAnnotator(thickness=2, color_lookup=sv.ColorLookup.TRACK)
|
105 |
+
round_box_annotator = sv.RoundBoxAnnotator(thickness=2, color_lookup=sv.ColorLookup.TRACK)
|
106 |
+
corner_annotator = sv.BoxCornerAnnotator(thickness=2, color_lookup=sv.ColorLookup.TRACK)
|
107 |
+
trace_annotator = sv.TraceAnnotator(thickness=2, trace_length=50, color_lookup=sv.ColorLookup.TRACK)
|
108 |
+
label_annotator = sv.LabelAnnotator(text_scale=0.5, color_lookup=sv.ColorLookup.TRACK)
|
109 |
+
return [bounding_box_annotator, round_box_annotator, corner_annotator], trace_annotator, label_annotator
|
110 |
+
|
111 |
+
def setup_counting_zone(counting_zone, video_info):
|
112 |
+
if counting_zone == 'whole_frame':
|
113 |
+
polygon = np.array([[0, 0], [video_info.width-1, 0], [video_info.width-1, video_info.height-1], [0, video_info.height-1]])
|
114 |
+
else:
|
115 |
+
polygon = np.array(counting_zone)
|
116 |
+
polygon_zone = sv.PolygonZone(polygon=polygon, frame_resolution_wh=(video_info.width, video_info.height), triggering_position=sv.Position.CENTER)
|
117 |
+
polygon_zone_annotator = sv.PolygonZoneAnnotator(polygon_zone, sv.Color.ROBOFLOW, thickness=2*(2 if counting_zone=='whole_frame' else 1), text_thickness=1, text_scale=0.5)
|
118 |
+
return polygon_zone, polygon_zone_annotator
|
119 |
+
|
120 |
+
def annotate_frame(frame, index, video_info, detections, byte_tracker, counting_zone, polygon_zone, polygon_zone_annotator, trace_annotator, annotators_list, label_annotator, show_labels, model):
|
121 |
+
detections = byte_tracker.update_with_detections(detections)
|
122 |
+
annotated_frame = frame.copy()
|
123 |
+
|
124 |
+
if counting_zone is not None:
|
125 |
+
is_inside_polygon = polygon_zone.trigger(detections)
|
126 |
+
detections = detections[is_inside_polygon]
|
127 |
+
annotated_frame = polygon_zone_annotator.annotate(annotated_frame)
|
128 |
+
|
129 |
+
annotated_frame = trace_annotator.annotate(scene=annotated_frame, detections=detections)
|
130 |
+
|
131 |
+
section_index = int(index / (video_info.total_frames / len(annotators_list)))
|
132 |
+
annotated_frame = annotators_list[section_index].annotate(scene=annotated_frame, detections=detections)
|
133 |
+
|
134 |
+
if show_labels:
|
135 |
+
annotated_frame = add_labels_to_frame(label_annotator, annotated_frame, detections, model)
|
136 |
+
|
137 |
+
return annotated_frame
|
138 |
+
|
139 |
+
def add_labels_to_frame(annotator, frame, detections, model):
|
140 |
+
labels = [f"#{tracker_id} {model.model.names[class_id]} {confidence:0.2f}" for confidence, class_id, tracker_id in zip(detections.confidence, detections.class_id, detections.tracker_id)]
|
141 |
+
return annotator.annotate(scene=frame, detections=detections, labels=labels)
|
142 |
+
|
143 |
+
def process_video(model, config=dict(conf=0.1, iou=0.45, classes=True,), counting_zone=True, show_labels=True, source_path=SOURCE_VIDEO_PATH, target_path=TARGET_VIDEO_PATH):
|
144 |
+
model, video_info = setup_model_and_video_info(model, config, source_path)
|
145 |
+
byte_tracker = create_byte_tracker(video_info)
|
146 |
+
annotators_list, trace_annotator, label_annotator = setup_annotators()
|
147 |
+
polygon_zone, polygon_zone_annotator = setup_counting_zone(counting_zone, video_info) if counting_zone else (None, None)
|
148 |
+
|
149 |
+
def callback(frame: np.ndarray, index: int) -> np.ndarray:
|
150 |
+
frame_rgb = frame[..., ::-1]
|
151 |
+
results = model(frame_rgb, size=608, augment=False)
|
152 |
+
detections = ExtendedDetections.from_yolov9(results)
|
153 |
+
|
154 |
+
# Display the frame with detections using cv2.imshow
|
155 |
+
annotated_frame = annotate_frame(frame, index, video_info, detections, byte_tracker, counting_zone, polygon_zone, polygon_zone_annotator, trace_annotator, annotators_list, label_annotator, show_labels, model)
|
156 |
+
cv2.imshow("Detections", annotated_frame)
|
157 |
+
cv2.waitKey(1) # Adjust the delay as needed
|
158 |
+
|
159 |
+
return annotated_frame
|
160 |
+
|
161 |
+
sv.process_video(source_path=source_path, target_path=target_path, callback=callback)
|
162 |
+
|
163 |
+
# Detection, Tracking, and Counting in Full Frame
|
164 |
+
yolov9_config=dict(conf=0.3, iou=0.45, classes=[0, 2, 3])
|
165 |
+
process_video(model, config=yolov9_config, counting_zone='whole_frame', show_labels=True, target_path='demo_file.mp4')
|
166 |
+
|
167 |
+
cv2.destroyAllWindows()
|
train_dual.py
ADDED
@@ -0,0 +1,644 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
import time
|
7 |
+
from copy import deepcopy
|
8 |
+
from datetime import datetime
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.distributed as dist
|
14 |
+
import torch.nn as nn
|
15 |
+
import yaml
|
16 |
+
from torch.optim import lr_scheduler
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
FILE = Path(__file__).resolve()
|
20 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
21 |
+
if str(ROOT) not in sys.path:
|
22 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
23 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
24 |
+
|
25 |
+
import val_dual as validate # for end-of-epoch mAP
|
26 |
+
from models.experimental import attempt_load
|
27 |
+
from models.yolo import Model
|
28 |
+
from utils.autoanchor import check_anchors
|
29 |
+
from utils.autobatch import check_train_batch_size
|
30 |
+
from utils.callbacks import Callbacks
|
31 |
+
from utils.dataloaders import create_dataloader
|
32 |
+
from utils.downloads import attempt_download, is_url
|
33 |
+
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
|
34 |
+
check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
|
35 |
+
get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
|
36 |
+
labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
|
37 |
+
yaml_save, one_flat_cycle)
|
38 |
+
from utils.loggers import Loggers
|
39 |
+
from utils.loggers.comet.comet_utils import check_comet_resume
|
40 |
+
from utils.loss_tal_dual import ComputeLoss
|
41 |
+
#from utils.loss_tal_dual import ComputeLossLH as ComputeLoss
|
42 |
+
#from utils.loss_tal_dual import ComputeLossLHCF as ComputeLoss
|
43 |
+
from utils.metrics import fitness
|
44 |
+
from utils.plots import plot_evolve
|
45 |
+
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
|
46 |
+
smart_resume, torch_distributed_zero_first)
|
47 |
+
|
48 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
49 |
+
RANK = int(os.getenv('RANK', -1))
|
50 |
+
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
51 |
+
GIT_INFO = None#check_git_info()
|
52 |
+
|
53 |
+
|
54 |
+
def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
|
55 |
+
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
|
56 |
+
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
|
57 |
+
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
|
58 |
+
callbacks.run('on_pretrain_routine_start')
|
59 |
+
|
60 |
+
# Directories
|
61 |
+
w = save_dir / 'weights' # weights dir
|
62 |
+
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
|
63 |
+
last, best = w / 'last.pt', w / 'best.pt'
|
64 |
+
|
65 |
+
# Hyperparameters
|
66 |
+
if isinstance(hyp, str):
|
67 |
+
with open(hyp, errors='ignore') as f:
|
68 |
+
hyp = yaml.safe_load(f) # load hyps dict
|
69 |
+
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
|
70 |
+
hyp['anchor_t'] = 5.0
|
71 |
+
opt.hyp = hyp.copy() # for saving hyps to checkpoints
|
72 |
+
|
73 |
+
# Save run settings
|
74 |
+
if not evolve:
|
75 |
+
yaml_save(save_dir / 'hyp.yaml', hyp)
|
76 |
+
yaml_save(save_dir / 'opt.yaml', vars(opt))
|
77 |
+
|
78 |
+
# Loggers
|
79 |
+
data_dict = None
|
80 |
+
if RANK in {-1, 0}:
|
81 |
+
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
|
82 |
+
|
83 |
+
# Register actions
|
84 |
+
for k in methods(loggers):
|
85 |
+
callbacks.register_action(k, callback=getattr(loggers, k))
|
86 |
+
|
87 |
+
# Process custom dataset artifact link
|
88 |
+
data_dict = loggers.remote_dataset
|
89 |
+
if resume: # If resuming runs from remote artifact
|
90 |
+
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
|
91 |
+
|
92 |
+
# Config
|
93 |
+
plots = not evolve and not opt.noplots # create plots
|
94 |
+
cuda = device.type != 'cpu'
|
95 |
+
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
96 |
+
with torch_distributed_zero_first(LOCAL_RANK):
|
97 |
+
data_dict = data_dict or check_dataset(data) # check if None
|
98 |
+
train_path, val_path = data_dict['train'], data_dict['val']
|
99 |
+
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
100 |
+
names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
101 |
+
#is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
|
102 |
+
is_coco = isinstance(val_path, str) and val_path.endswith('val2017.txt') # COCO dataset
|
103 |
+
|
104 |
+
# Model
|
105 |
+
check_suffix(weights, '.pt') # check weights
|
106 |
+
pretrained = weights.endswith('.pt')
|
107 |
+
if pretrained:
|
108 |
+
with torch_distributed_zero_first(LOCAL_RANK):
|
109 |
+
weights = attempt_download(weights) # download if not found locally
|
110 |
+
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
|
111 |
+
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
112 |
+
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
|
113 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
114 |
+
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
|
115 |
+
model.load_state_dict(csd, strict=False) # load
|
116 |
+
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
|
117 |
+
else:
|
118 |
+
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
119 |
+
amp = check_amp(model) # check AMP
|
120 |
+
|
121 |
+
# Freeze
|
122 |
+
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
|
123 |
+
for k, v in model.named_parameters():
|
124 |
+
# v.requires_grad = True # train all layers TODO: uncomment this line as in master
|
125 |
+
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
|
126 |
+
if any(x in k for x in freeze):
|
127 |
+
LOGGER.info(f'freezing {k}')
|
128 |
+
v.requires_grad = False
|
129 |
+
|
130 |
+
# Image size
|
131 |
+
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
132 |
+
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
|
133 |
+
|
134 |
+
# Batch size
|
135 |
+
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
|
136 |
+
batch_size = check_train_batch_size(model, imgsz, amp)
|
137 |
+
loggers.on_params_update({"batch_size": batch_size})
|
138 |
+
|
139 |
+
# Optimizer
|
140 |
+
nbs = 64 # nominal batch size
|
141 |
+
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
142 |
+
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
|
143 |
+
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
|
144 |
+
|
145 |
+
# Scheduler
|
146 |
+
if opt.cos_lr:
|
147 |
+
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
148 |
+
elif opt.flat_cos_lr:
|
149 |
+
lf = one_flat_cycle(1, hyp['lrf'], epochs) # flat cosine 1->hyp['lrf']
|
150 |
+
elif opt.fixed_lr:
|
151 |
+
lf = lambda x: 1.0
|
152 |
+
else:
|
153 |
+
lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
154 |
+
|
155 |
+
# def lf(x): # saw
|
156 |
+
# return (1 - (x % 30) / 30) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
|
157 |
+
#
|
158 |
+
# def lf(x): # triangle start at min
|
159 |
+
# return 2 * abs(x / 30 - math.floor(x / 30 + 1 / 2)) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
|
160 |
+
#
|
161 |
+
# def lf(x): # triangle start at max
|
162 |
+
# return 2 * abs(x / 32 + .5 - math.floor(x / 32 + 1)) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
|
163 |
+
|
164 |
+
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
165 |
+
# from utils.plots import plot_lr_scheduler; plot_lr_scheduler(optimizer, scheduler, epochs)
|
166 |
+
|
167 |
+
# EMA
|
168 |
+
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
169 |
+
|
170 |
+
# Resume
|
171 |
+
best_fitness, start_epoch = 0.0, 0
|
172 |
+
if pretrained:
|
173 |
+
if resume:
|
174 |
+
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
|
175 |
+
del ckpt, csd
|
176 |
+
|
177 |
+
# DP mode
|
178 |
+
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
179 |
+
LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.')
|
180 |
+
model = torch.nn.DataParallel(model)
|
181 |
+
|
182 |
+
# SyncBatchNorm
|
183 |
+
if opt.sync_bn and cuda and RANK != -1:
|
184 |
+
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
185 |
+
LOGGER.info('Using SyncBatchNorm()')
|
186 |
+
|
187 |
+
# Trainloader
|
188 |
+
train_loader, dataset = create_dataloader(train_path,
|
189 |
+
imgsz,
|
190 |
+
batch_size // WORLD_SIZE,
|
191 |
+
gs,
|
192 |
+
single_cls,
|
193 |
+
hyp=hyp,
|
194 |
+
augment=True,
|
195 |
+
cache=None if opt.cache == 'val' else opt.cache,
|
196 |
+
rect=opt.rect,
|
197 |
+
rank=LOCAL_RANK,
|
198 |
+
workers=workers,
|
199 |
+
image_weights=opt.image_weights,
|
200 |
+
close_mosaic=opt.close_mosaic != 0,
|
201 |
+
quad=opt.quad,
|
202 |
+
prefix=colorstr('train: '),
|
203 |
+
shuffle=True,
|
204 |
+
min_items=opt.min_items)
|
205 |
+
labels = np.concatenate(dataset.labels, 0)
|
206 |
+
mlc = int(labels[:, 0].max()) # max label class
|
207 |
+
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
|
208 |
+
|
209 |
+
# Process 0
|
210 |
+
if RANK in {-1, 0}:
|
211 |
+
val_loader = create_dataloader(val_path,
|
212 |
+
imgsz,
|
213 |
+
batch_size // WORLD_SIZE * 2,
|
214 |
+
gs,
|
215 |
+
single_cls,
|
216 |
+
hyp=hyp,
|
217 |
+
cache=None if noval else opt.cache,
|
218 |
+
rect=True,
|
219 |
+
rank=-1,
|
220 |
+
workers=workers * 2,
|
221 |
+
pad=0.5,
|
222 |
+
prefix=colorstr('val: '))[0]
|
223 |
+
|
224 |
+
if not resume:
|
225 |
+
# if not opt.noautoanchor:
|
226 |
+
# check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
|
227 |
+
model.half().float() # pre-reduce anchor precision
|
228 |
+
|
229 |
+
callbacks.run('on_pretrain_routine_end', labels, names)
|
230 |
+
|
231 |
+
# DDP mode
|
232 |
+
if cuda and RANK != -1:
|
233 |
+
model = smart_DDP(model)
|
234 |
+
|
235 |
+
# Model attributes
|
236 |
+
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
|
237 |
+
#hyp['box'] *= 3 / nl # scale to layers
|
238 |
+
#hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
|
239 |
+
#hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
240 |
+
hyp['label_smoothing'] = opt.label_smoothing
|
241 |
+
model.nc = nc # attach number of classes to model
|
242 |
+
model.hyp = hyp # attach hyperparameters to model
|
243 |
+
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
244 |
+
model.names = names
|
245 |
+
|
246 |
+
# Start training
|
247 |
+
t0 = time.time()
|
248 |
+
nb = len(train_loader) # number of batches
|
249 |
+
nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
|
250 |
+
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
251 |
+
last_opt_step = -1
|
252 |
+
maps = np.zeros(nc) # mAP per class
|
253 |
+
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
254 |
+
scheduler.last_epoch = start_epoch - 1 # do not move
|
255 |
+
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
256 |
+
stopper, stop = EarlyStopping(patience=opt.patience), False
|
257 |
+
compute_loss = ComputeLoss(model) # init loss class
|
258 |
+
callbacks.run('on_train_start')
|
259 |
+
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
260 |
+
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
261 |
+
f"Logging results to {colorstr('bold', save_dir)}\n"
|
262 |
+
f'Starting training for {epochs} epochs...')
|
263 |
+
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
264 |
+
callbacks.run('on_train_epoch_start')
|
265 |
+
model.train()
|
266 |
+
|
267 |
+
# Update image weights (optional, single-GPU only)
|
268 |
+
if opt.image_weights:
|
269 |
+
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
270 |
+
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
271 |
+
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
272 |
+
if epoch == (epochs - opt.close_mosaic):
|
273 |
+
LOGGER.info("Closing dataloader mosaic")
|
274 |
+
dataset.mosaic = False
|
275 |
+
|
276 |
+
# Update mosaic border (optional)
|
277 |
+
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
278 |
+
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
279 |
+
|
280 |
+
mloss = torch.zeros(3, device=device) # mean losses
|
281 |
+
if RANK != -1:
|
282 |
+
train_loader.sampler.set_epoch(epoch)
|
283 |
+
pbar = enumerate(train_loader)
|
284 |
+
LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'cls_loss', 'dfl_loss', 'Instances', 'Size'))
|
285 |
+
if RANK in {-1, 0}:
|
286 |
+
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
|
287 |
+
optimizer.zero_grad()
|
288 |
+
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
289 |
+
callbacks.run('on_train_batch_start')
|
290 |
+
ni = i + nb * epoch # number integrated batches (since train start)
|
291 |
+
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
292 |
+
|
293 |
+
# Warmup
|
294 |
+
if ni <= nw:
|
295 |
+
xi = [0, nw] # x interp
|
296 |
+
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
297 |
+
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
298 |
+
for j, x in enumerate(optimizer.param_groups):
|
299 |
+
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
300 |
+
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
|
301 |
+
if 'momentum' in x:
|
302 |
+
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
303 |
+
|
304 |
+
# Multi-scale
|
305 |
+
if opt.multi_scale:
|
306 |
+
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
307 |
+
sf = sz / max(imgs.shape[2:]) # scale factor
|
308 |
+
if sf != 1:
|
309 |
+
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
310 |
+
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
311 |
+
|
312 |
+
# Forward
|
313 |
+
with torch.cuda.amp.autocast(amp):
|
314 |
+
pred = model(imgs) # forward
|
315 |
+
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
316 |
+
if RANK != -1:
|
317 |
+
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
|
318 |
+
if opt.quad:
|
319 |
+
loss *= 4.
|
320 |
+
|
321 |
+
# Backward
|
322 |
+
scaler.scale(loss).backward()
|
323 |
+
|
324 |
+
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
|
325 |
+
if ni - last_opt_step >= accumulate:
|
326 |
+
scaler.unscale_(optimizer) # unscale gradients
|
327 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
328 |
+
scaler.step(optimizer) # optimizer.step
|
329 |
+
scaler.update()
|
330 |
+
optimizer.zero_grad()
|
331 |
+
if ema:
|
332 |
+
ema.update(model)
|
333 |
+
last_opt_step = ni
|
334 |
+
|
335 |
+
# Log
|
336 |
+
if RANK in {-1, 0}:
|
337 |
+
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
338 |
+
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
339 |
+
pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
|
340 |
+
(f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
|
341 |
+
callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
|
342 |
+
if callbacks.stop_training:
|
343 |
+
return
|
344 |
+
# end batch ------------------------------------------------------------------------------------------------
|
345 |
+
|
346 |
+
# Scheduler
|
347 |
+
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
|
348 |
+
scheduler.step()
|
349 |
+
|
350 |
+
if RANK in {-1, 0}:
|
351 |
+
# mAP
|
352 |
+
callbacks.run('on_train_epoch_end', epoch=epoch)
|
353 |
+
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
354 |
+
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
355 |
+
if not noval or final_epoch: # Calculate mAP
|
356 |
+
results, maps, _ = validate.run(data_dict,
|
357 |
+
batch_size=batch_size // WORLD_SIZE * 2,
|
358 |
+
imgsz=imgsz,
|
359 |
+
half=amp,
|
360 |
+
model=ema.ema,
|
361 |
+
single_cls=single_cls,
|
362 |
+
dataloader=val_loader,
|
363 |
+
save_dir=save_dir,
|
364 |
+
plots=False,
|
365 |
+
callbacks=callbacks,
|
366 |
+
compute_loss=compute_loss)
|
367 |
+
|
368 |
+
# Update best mAP
|
369 |
+
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
370 |
+
stop = stopper(epoch=epoch, fitness=fi) # early stop check
|
371 |
+
if fi > best_fitness:
|
372 |
+
best_fitness = fi
|
373 |
+
log_vals = list(mloss) + list(results) + lr
|
374 |
+
callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
|
375 |
+
|
376 |
+
# Save model
|
377 |
+
if (not nosave) or (final_epoch and not evolve): # if save
|
378 |
+
ckpt = {
|
379 |
+
'epoch': epoch,
|
380 |
+
'best_fitness': best_fitness,
|
381 |
+
'model': deepcopy(de_parallel(model)).half(),
|
382 |
+
'ema': deepcopy(ema.ema).half(),
|
383 |
+
'updates': ema.updates,
|
384 |
+
'optimizer': optimizer.state_dict(),
|
385 |
+
'opt': vars(opt),
|
386 |
+
'git': GIT_INFO, # {remote, branch, commit} if a git repo
|
387 |
+
'date': datetime.now().isoformat()}
|
388 |
+
|
389 |
+
# Save last, best and delete
|
390 |
+
torch.save(ckpt, last)
|
391 |
+
if best_fitness == fi:
|
392 |
+
torch.save(ckpt, best)
|
393 |
+
if opt.save_period > 0 and epoch % opt.save_period == 0:
|
394 |
+
torch.save(ckpt, w / f'epoch{epoch}.pt')
|
395 |
+
del ckpt
|
396 |
+
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
|
397 |
+
|
398 |
+
# EarlyStopping
|
399 |
+
if RANK != -1: # if DDP training
|
400 |
+
broadcast_list = [stop if RANK == 0 else None]
|
401 |
+
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
|
402 |
+
if RANK != 0:
|
403 |
+
stop = broadcast_list[0]
|
404 |
+
if stop:
|
405 |
+
break # must break all DDP ranks
|
406 |
+
|
407 |
+
# end epoch ----------------------------------------------------------------------------------------------------
|
408 |
+
# end training -----------------------------------------------------------------------------------------------------
|
409 |
+
if RANK in {-1, 0}:
|
410 |
+
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
411 |
+
for f in last, best:
|
412 |
+
if f.exists():
|
413 |
+
strip_optimizer(f) # strip optimizers
|
414 |
+
if f is best:
|
415 |
+
LOGGER.info(f'\nValidating {f}...')
|
416 |
+
results, _, _ = validate.run(
|
417 |
+
data_dict,
|
418 |
+
batch_size=batch_size // WORLD_SIZE * 2,
|
419 |
+
imgsz=imgsz,
|
420 |
+
model=attempt_load(f, device).half(),
|
421 |
+
single_cls=single_cls,
|
422 |
+
dataloader=val_loader,
|
423 |
+
save_dir=save_dir,
|
424 |
+
save_json=is_coco,
|
425 |
+
verbose=True,
|
426 |
+
plots=plots,
|
427 |
+
callbacks=callbacks,
|
428 |
+
compute_loss=compute_loss) # val best model with plots
|
429 |
+
if is_coco:
|
430 |
+
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
|
431 |
+
|
432 |
+
callbacks.run('on_train_end', last, best, epoch, results)
|
433 |
+
|
434 |
+
torch.cuda.empty_cache()
|
435 |
+
return results
|
436 |
+
|
437 |
+
|
438 |
+
def parse_opt(known=False):
|
439 |
+
parser = argparse.ArgumentParser()
|
440 |
+
# parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='initial weights path')
|
441 |
+
# parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
442 |
+
parser.add_argument('--weights', type=str, default='', help='initial weights path')
|
443 |
+
parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml path')
|
444 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
|
445 |
+
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-high.yaml', help='hyperparameters path')
|
446 |
+
parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
|
447 |
+
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
|
448 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
|
449 |
+
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
450 |
+
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
451 |
+
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
452 |
+
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
453 |
+
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
|
454 |
+
parser.add_argument('--noplots', action='store_true', help='save no plot files')
|
455 |
+
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
456 |
+
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
457 |
+
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
|
458 |
+
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
459 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
460 |
+
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
461 |
+
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
462 |
+
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
|
463 |
+
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
464 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
465 |
+
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
|
466 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
467 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
468 |
+
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
469 |
+
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
|
470 |
+
parser.add_argument('--flat-cos-lr', action='store_true', help='flat cosine LR scheduler')
|
471 |
+
parser.add_argument('--fixed-lr', action='store_true', help='fixed LR scheduler')
|
472 |
+
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
473 |
+
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
474 |
+
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
|
475 |
+
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
|
476 |
+
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
477 |
+
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
478 |
+
parser.add_argument('--min-items', type=int, default=0, help='Experimental')
|
479 |
+
parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
|
480 |
+
|
481 |
+
# Logger arguments
|
482 |
+
parser.add_argument('--entity', default=None, help='Entity')
|
483 |
+
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
|
484 |
+
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
|
485 |
+
parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
|
486 |
+
|
487 |
+
return parser.parse_known_args()[0] if known else parser.parse_args()
|
488 |
+
|
489 |
+
|
490 |
+
def main(opt, callbacks=Callbacks()):
|
491 |
+
# Checks
|
492 |
+
if RANK in {-1, 0}:
|
493 |
+
print_args(vars(opt))
|
494 |
+
#check_git_status()
|
495 |
+
#check_requirements()
|
496 |
+
|
497 |
+
# Resume (from specified or most recent last.pt)
|
498 |
+
if opt.resume and not check_comet_resume(opt) and not opt.evolve:
|
499 |
+
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
|
500 |
+
opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
|
501 |
+
opt_data = opt.data # original dataset
|
502 |
+
if opt_yaml.is_file():
|
503 |
+
with open(opt_yaml, errors='ignore') as f:
|
504 |
+
d = yaml.safe_load(f)
|
505 |
+
else:
|
506 |
+
d = torch.load(last, map_location='cpu')['opt']
|
507 |
+
opt = argparse.Namespace(**d) # replace
|
508 |
+
opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
|
509 |
+
if is_url(opt_data):
|
510 |
+
opt.data = check_file(opt_data) # avoid HUB resume auth timeout
|
511 |
+
else:
|
512 |
+
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
|
513 |
+
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
|
514 |
+
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
515 |
+
if opt.evolve:
|
516 |
+
if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
|
517 |
+
opt.project = str(ROOT / 'runs/evolve')
|
518 |
+
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
|
519 |
+
if opt.name == 'cfg':
|
520 |
+
opt.name = Path(opt.cfg).stem # use model.yaml as name
|
521 |
+
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
522 |
+
|
523 |
+
# DDP mode
|
524 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
525 |
+
if LOCAL_RANK != -1:
|
526 |
+
msg = 'is not compatible with YOLO Multi-GPU DDP training'
|
527 |
+
assert not opt.image_weights, f'--image-weights {msg}'
|
528 |
+
assert not opt.evolve, f'--evolve {msg}'
|
529 |
+
assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
|
530 |
+
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
|
531 |
+
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
|
532 |
+
torch.cuda.set_device(LOCAL_RANK)
|
533 |
+
device = torch.device('cuda', LOCAL_RANK)
|
534 |
+
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
535 |
+
|
536 |
+
# Train
|
537 |
+
if not opt.evolve:
|
538 |
+
train(opt.hyp, opt, device, callbacks)
|
539 |
+
|
540 |
+
# Evolve hyperparameters (optional)
|
541 |
+
else:
|
542 |
+
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
543 |
+
meta = {
|
544 |
+
'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
545 |
+
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
546 |
+
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
547 |
+
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
548 |
+
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
549 |
+
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
550 |
+
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
551 |
+
'box': (1, 0.02, 0.2), # box loss gain
|
552 |
+
'cls': (1, 0.2, 4.0), # cls loss gain
|
553 |
+
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
554 |
+
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
555 |
+
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
556 |
+
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
557 |
+
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
558 |
+
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
559 |
+
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
560 |
+
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
561 |
+
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
562 |
+
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
563 |
+
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
564 |
+
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
565 |
+
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
566 |
+
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
567 |
+
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
568 |
+
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
569 |
+
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
570 |
+
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
571 |
+
'mixup': (1, 0.0, 1.0), # image mixup (probability)
|
572 |
+
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
|
573 |
+
|
574 |
+
with open(opt.hyp, errors='ignore') as f:
|
575 |
+
hyp = yaml.safe_load(f) # load hyps dict
|
576 |
+
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
577 |
+
hyp['anchors'] = 3
|
578 |
+
if opt.noautoanchor:
|
579 |
+
del hyp['anchors'], meta['anchors']
|
580 |
+
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
581 |
+
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
582 |
+
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
|
583 |
+
if opt.bucket:
|
584 |
+
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
|
585 |
+
|
586 |
+
for _ in range(opt.evolve): # generations to evolve
|
587 |
+
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
588 |
+
# Select parent(s)
|
589 |
+
parent = 'single' # parent selection method: 'single' or 'weighted'
|
590 |
+
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
|
591 |
+
n = min(5, len(x)) # number of previous results to consider
|
592 |
+
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
593 |
+
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
|
594 |
+
if parent == 'single' or len(x) == 1:
|
595 |
+
# x = x[random.randint(0, n - 1)] # random selection
|
596 |
+
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
597 |
+
elif parent == 'weighted':
|
598 |
+
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
599 |
+
|
600 |
+
# Mutate
|
601 |
+
mp, s = 0.8, 0.2 # mutation probability, sigma
|
602 |
+
npr = np.random
|
603 |
+
npr.seed(int(time.time()))
|
604 |
+
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
|
605 |
+
ng = len(meta)
|
606 |
+
v = np.ones(ng)
|
607 |
+
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
608 |
+
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
609 |
+
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
610 |
+
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
611 |
+
|
612 |
+
# Constrain to limits
|
613 |
+
for k, v in meta.items():
|
614 |
+
hyp[k] = max(hyp[k], v[1]) # lower limit
|
615 |
+
hyp[k] = min(hyp[k], v[2]) # upper limit
|
616 |
+
hyp[k] = round(hyp[k], 5) # significant digits
|
617 |
+
|
618 |
+
# Train mutation
|
619 |
+
results = train(hyp.copy(), opt, device, callbacks)
|
620 |
+
callbacks = Callbacks()
|
621 |
+
# Write mutation results
|
622 |
+
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
|
623 |
+
'val/obj_loss', 'val/cls_loss')
|
624 |
+
print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
|
625 |
+
|
626 |
+
# Plot results
|
627 |
+
plot_evolve(evolve_csv)
|
628 |
+
LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
|
629 |
+
f"Results saved to {colorstr('bold', save_dir)}\n"
|
630 |
+
f'Usage example: $ python train.py --hyp {evolve_yaml}')
|
631 |
+
|
632 |
+
|
633 |
+
def run(**kwargs):
|
634 |
+
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolo.pt')
|
635 |
+
opt = parse_opt(True)
|
636 |
+
for k, v in kwargs.items():
|
637 |
+
setattr(opt, k, v)
|
638 |
+
main(opt)
|
639 |
+
return opt
|
640 |
+
|
641 |
+
|
642 |
+
if __name__ == "__main__":
|
643 |
+
opt = parse_opt()
|
644 |
+
main(opt)
|
train_triple.py
ADDED
@@ -0,0 +1,636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
import time
|
7 |
+
from copy import deepcopy
|
8 |
+
from datetime import datetime
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.distributed as dist
|
14 |
+
import torch.nn as nn
|
15 |
+
import yaml
|
16 |
+
from torch.optim import lr_scheduler
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
FILE = Path(__file__).resolve()
|
20 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
21 |
+
if str(ROOT) not in sys.path:
|
22 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
23 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
24 |
+
|
25 |
+
import val_triple as validate # for end-of-epoch mAP
|
26 |
+
from models.experimental import attempt_load
|
27 |
+
from models.yolo import Model
|
28 |
+
from utils.autoanchor import check_anchors
|
29 |
+
from utils.autobatch import check_train_batch_size
|
30 |
+
from utils.callbacks import Callbacks
|
31 |
+
from utils.dataloaders import create_dataloader
|
32 |
+
from utils.downloads import attempt_download, is_url
|
33 |
+
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
|
34 |
+
check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
|
35 |
+
get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
|
36 |
+
labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
|
37 |
+
yaml_save)
|
38 |
+
from utils.loggers import Loggers
|
39 |
+
from utils.loggers.comet.comet_utils import check_comet_resume
|
40 |
+
from utils.loss_tal_triple import ComputeLoss
|
41 |
+
from utils.metrics import fitness
|
42 |
+
from utils.plots import plot_evolve
|
43 |
+
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
|
44 |
+
smart_resume, torch_distributed_zero_first)
|
45 |
+
|
46 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
47 |
+
RANK = int(os.getenv('RANK', -1))
|
48 |
+
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
49 |
+
GIT_INFO = None#check_git_info()
|
50 |
+
|
51 |
+
|
52 |
+
def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
|
53 |
+
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
|
54 |
+
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
|
55 |
+
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
|
56 |
+
callbacks.run('on_pretrain_routine_start')
|
57 |
+
|
58 |
+
# Directories
|
59 |
+
w = save_dir / 'weights' # weights dir
|
60 |
+
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
|
61 |
+
last, best = w / 'last.pt', w / 'best.pt'
|
62 |
+
|
63 |
+
# Hyperparameters
|
64 |
+
if isinstance(hyp, str):
|
65 |
+
with open(hyp, errors='ignore') as f:
|
66 |
+
hyp = yaml.safe_load(f) # load hyps dict
|
67 |
+
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
|
68 |
+
hyp['anchor_t'] = 5.0
|
69 |
+
opt.hyp = hyp.copy() # for saving hyps to checkpoints
|
70 |
+
|
71 |
+
# Save run settings
|
72 |
+
if not evolve:
|
73 |
+
yaml_save(save_dir / 'hyp.yaml', hyp)
|
74 |
+
yaml_save(save_dir / 'opt.yaml', vars(opt))
|
75 |
+
|
76 |
+
# Loggers
|
77 |
+
data_dict = None
|
78 |
+
if RANK in {-1, 0}:
|
79 |
+
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
|
80 |
+
|
81 |
+
# Register actions
|
82 |
+
for k in methods(loggers):
|
83 |
+
callbacks.register_action(k, callback=getattr(loggers, k))
|
84 |
+
|
85 |
+
# Process custom dataset artifact link
|
86 |
+
data_dict = loggers.remote_dataset
|
87 |
+
if resume: # If resuming runs from remote artifact
|
88 |
+
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
|
89 |
+
|
90 |
+
# Config
|
91 |
+
plots = not evolve and not opt.noplots # create plots
|
92 |
+
cuda = device.type != 'cpu'
|
93 |
+
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
94 |
+
with torch_distributed_zero_first(LOCAL_RANK):
|
95 |
+
data_dict = data_dict or check_dataset(data) # check if None
|
96 |
+
train_path, val_path = data_dict['train'], data_dict['val']
|
97 |
+
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
98 |
+
names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
99 |
+
#is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
|
100 |
+
is_coco = isinstance(val_path, str) and val_path.endswith('val2017.txt') # COCO dataset
|
101 |
+
|
102 |
+
# Model
|
103 |
+
check_suffix(weights, '.pt') # check weights
|
104 |
+
pretrained = weights.endswith('.pt')
|
105 |
+
if pretrained:
|
106 |
+
with torch_distributed_zero_first(LOCAL_RANK):
|
107 |
+
weights = attempt_download(weights) # download if not found locally
|
108 |
+
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
|
109 |
+
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
110 |
+
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
|
111 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
112 |
+
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
|
113 |
+
model.load_state_dict(csd, strict=False) # load
|
114 |
+
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
|
115 |
+
else:
|
116 |
+
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
117 |
+
amp = check_amp(model) # check AMP
|
118 |
+
|
119 |
+
# Freeze
|
120 |
+
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
|
121 |
+
for k, v in model.named_parameters():
|
122 |
+
# v.requires_grad = True # train all layers TODO: uncomment this line as in master
|
123 |
+
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
|
124 |
+
if any(x in k for x in freeze):
|
125 |
+
LOGGER.info(f'freezing {k}')
|
126 |
+
v.requires_grad = False
|
127 |
+
|
128 |
+
# Image size
|
129 |
+
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
130 |
+
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
|
131 |
+
|
132 |
+
# Batch size
|
133 |
+
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
|
134 |
+
batch_size = check_train_batch_size(model, imgsz, amp)
|
135 |
+
loggers.on_params_update({"batch_size": batch_size})
|
136 |
+
|
137 |
+
# Optimizer
|
138 |
+
nbs = 64 # nominal batch size
|
139 |
+
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
140 |
+
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
|
141 |
+
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
|
142 |
+
|
143 |
+
# Scheduler
|
144 |
+
if opt.cos_lr:
|
145 |
+
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
146 |
+
else:
|
147 |
+
lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
148 |
+
|
149 |
+
# def lf(x): # saw
|
150 |
+
# return (1 - (x % 30) / 30) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
|
151 |
+
#
|
152 |
+
# def lf(x): # triangle start at min
|
153 |
+
# return 2 * abs(x / 30 - math.floor(x / 30 + 1 / 2)) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
|
154 |
+
#
|
155 |
+
# def lf(x): # triangle start at max
|
156 |
+
# return 2 * abs(x / 32 + .5 - math.floor(x / 32 + 1)) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
|
157 |
+
|
158 |
+
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
159 |
+
# from utils.plots import plot_lr_scheduler; plot_lr_scheduler(optimizer, scheduler, epochs)
|
160 |
+
|
161 |
+
# EMA
|
162 |
+
ema = ModelEMA(model) if RANK in {-1, 0} else None
|
163 |
+
|
164 |
+
# Resume
|
165 |
+
best_fitness, start_epoch = 0.0, 0
|
166 |
+
if pretrained:
|
167 |
+
if resume:
|
168 |
+
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
|
169 |
+
del ckpt, csd
|
170 |
+
|
171 |
+
# DP mode
|
172 |
+
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
173 |
+
LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.')
|
174 |
+
model = torch.nn.DataParallel(model)
|
175 |
+
|
176 |
+
# SyncBatchNorm
|
177 |
+
if opt.sync_bn and cuda and RANK != -1:
|
178 |
+
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
179 |
+
LOGGER.info('Using SyncBatchNorm()')
|
180 |
+
|
181 |
+
# Trainloader
|
182 |
+
train_loader, dataset = create_dataloader(train_path,
|
183 |
+
imgsz,
|
184 |
+
batch_size // WORLD_SIZE,
|
185 |
+
gs,
|
186 |
+
single_cls,
|
187 |
+
hyp=hyp,
|
188 |
+
augment=True,
|
189 |
+
cache=None if opt.cache == 'val' else opt.cache,
|
190 |
+
rect=opt.rect,
|
191 |
+
rank=LOCAL_RANK,
|
192 |
+
workers=workers,
|
193 |
+
image_weights=opt.image_weights,
|
194 |
+
close_mosaic=opt.close_mosaic != 0,
|
195 |
+
quad=opt.quad,
|
196 |
+
prefix=colorstr('train: '),
|
197 |
+
shuffle=True,
|
198 |
+
min_items=opt.min_items)
|
199 |
+
labels = np.concatenate(dataset.labels, 0)
|
200 |
+
mlc = int(labels[:, 0].max()) # max label class
|
201 |
+
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
|
202 |
+
|
203 |
+
# Process 0
|
204 |
+
if RANK in {-1, 0}:
|
205 |
+
val_loader = create_dataloader(val_path,
|
206 |
+
imgsz,
|
207 |
+
batch_size // WORLD_SIZE * 2,
|
208 |
+
gs,
|
209 |
+
single_cls,
|
210 |
+
hyp=hyp,
|
211 |
+
cache=None if noval else opt.cache,
|
212 |
+
rect=True,
|
213 |
+
rank=-1,
|
214 |
+
workers=workers * 2,
|
215 |
+
pad=0.5,
|
216 |
+
prefix=colorstr('val: '))[0]
|
217 |
+
|
218 |
+
if not resume:
|
219 |
+
# if not opt.noautoanchor:
|
220 |
+
# check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
|
221 |
+
model.half().float() # pre-reduce anchor precision
|
222 |
+
|
223 |
+
callbacks.run('on_pretrain_routine_end', labels, names)
|
224 |
+
|
225 |
+
# DDP mode
|
226 |
+
if cuda and RANK != -1:
|
227 |
+
model = smart_DDP(model)
|
228 |
+
|
229 |
+
# Model attributes
|
230 |
+
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
|
231 |
+
#hyp['box'] *= 3 / nl # scale to layers
|
232 |
+
#hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
|
233 |
+
#hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
234 |
+
hyp['label_smoothing'] = opt.label_smoothing
|
235 |
+
model.nc = nc # attach number of classes to model
|
236 |
+
model.hyp = hyp # attach hyperparameters to model
|
237 |
+
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
238 |
+
model.names = names
|
239 |
+
|
240 |
+
# Start training
|
241 |
+
t0 = time.time()
|
242 |
+
nb = len(train_loader) # number of batches
|
243 |
+
nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
|
244 |
+
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
245 |
+
last_opt_step = -1
|
246 |
+
maps = np.zeros(nc) # mAP per class
|
247 |
+
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
248 |
+
scheduler.last_epoch = start_epoch - 1 # do not move
|
249 |
+
scaler = torch.cuda.amp.GradScaler(enabled=amp)
|
250 |
+
stopper, stop = EarlyStopping(patience=opt.patience), False
|
251 |
+
compute_loss = ComputeLoss(model) # init loss class
|
252 |
+
callbacks.run('on_train_start')
|
253 |
+
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
254 |
+
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
255 |
+
f"Logging results to {colorstr('bold', save_dir)}\n"
|
256 |
+
f'Starting training for {epochs} epochs...')
|
257 |
+
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
258 |
+
callbacks.run('on_train_epoch_start')
|
259 |
+
model.train()
|
260 |
+
|
261 |
+
# Update image weights (optional, single-GPU only)
|
262 |
+
if opt.image_weights:
|
263 |
+
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
264 |
+
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
265 |
+
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
266 |
+
if epoch == (epochs - opt.close_mosaic):
|
267 |
+
LOGGER.info("Closing dataloader mosaic")
|
268 |
+
dataset.mosaic = False
|
269 |
+
|
270 |
+
# Update mosaic border (optional)
|
271 |
+
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
272 |
+
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
273 |
+
|
274 |
+
mloss = torch.zeros(3, device=device) # mean losses
|
275 |
+
if RANK != -1:
|
276 |
+
train_loader.sampler.set_epoch(epoch)
|
277 |
+
pbar = enumerate(train_loader)
|
278 |
+
LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'cls_loss', 'dfl_loss', 'Instances', 'Size'))
|
279 |
+
if RANK in {-1, 0}:
|
280 |
+
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
|
281 |
+
optimizer.zero_grad()
|
282 |
+
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
283 |
+
callbacks.run('on_train_batch_start')
|
284 |
+
ni = i + nb * epoch # number integrated batches (since train start)
|
285 |
+
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
286 |
+
|
287 |
+
# Warmup
|
288 |
+
if ni <= nw:
|
289 |
+
xi = [0, nw] # x interp
|
290 |
+
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
291 |
+
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
292 |
+
for j, x in enumerate(optimizer.param_groups):
|
293 |
+
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
294 |
+
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
|
295 |
+
if 'momentum' in x:
|
296 |
+
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
297 |
+
|
298 |
+
# Multi-scale
|
299 |
+
if opt.multi_scale:
|
300 |
+
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
301 |
+
sf = sz / max(imgs.shape[2:]) # scale factor
|
302 |
+
if sf != 1:
|
303 |
+
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
304 |
+
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
305 |
+
|
306 |
+
# Forward
|
307 |
+
with torch.cuda.amp.autocast(amp):
|
308 |
+
pred = model(imgs) # forward
|
309 |
+
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
310 |
+
if RANK != -1:
|
311 |
+
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
|
312 |
+
if opt.quad:
|
313 |
+
loss *= 4.
|
314 |
+
|
315 |
+
# Backward
|
316 |
+
scaler.scale(loss).backward()
|
317 |
+
|
318 |
+
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
|
319 |
+
if ni - last_opt_step >= accumulate:
|
320 |
+
scaler.unscale_(optimizer) # unscale gradients
|
321 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
|
322 |
+
scaler.step(optimizer) # optimizer.step
|
323 |
+
scaler.update()
|
324 |
+
optimizer.zero_grad()
|
325 |
+
if ema:
|
326 |
+
ema.update(model)
|
327 |
+
last_opt_step = ni
|
328 |
+
|
329 |
+
# Log
|
330 |
+
if RANK in {-1, 0}:
|
331 |
+
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
332 |
+
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
333 |
+
pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
|
334 |
+
(f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
|
335 |
+
callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
|
336 |
+
if callbacks.stop_training:
|
337 |
+
return
|
338 |
+
# end batch ------------------------------------------------------------------------------------------------
|
339 |
+
|
340 |
+
# Scheduler
|
341 |
+
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
|
342 |
+
scheduler.step()
|
343 |
+
|
344 |
+
if RANK in {-1, 0}:
|
345 |
+
# mAP
|
346 |
+
callbacks.run('on_train_epoch_end', epoch=epoch)
|
347 |
+
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
348 |
+
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
349 |
+
if not noval or final_epoch: # Calculate mAP
|
350 |
+
results, maps, _ = validate.run(data_dict,
|
351 |
+
batch_size=batch_size // WORLD_SIZE * 2,
|
352 |
+
imgsz=imgsz,
|
353 |
+
half=amp,
|
354 |
+
model=ema.ema,
|
355 |
+
single_cls=single_cls,
|
356 |
+
dataloader=val_loader,
|
357 |
+
save_dir=save_dir,
|
358 |
+
plots=False,
|
359 |
+
callbacks=callbacks,
|
360 |
+
compute_loss=compute_loss)
|
361 |
+
|
362 |
+
# Update best mAP
|
363 |
+
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
364 |
+
stop = stopper(epoch=epoch, fitness=fi) # early stop check
|
365 |
+
if fi > best_fitness:
|
366 |
+
best_fitness = fi
|
367 |
+
log_vals = list(mloss) + list(results) + lr
|
368 |
+
callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
|
369 |
+
|
370 |
+
# Save model
|
371 |
+
if (not nosave) or (final_epoch and not evolve): # if save
|
372 |
+
ckpt = {
|
373 |
+
'epoch': epoch,
|
374 |
+
'best_fitness': best_fitness,
|
375 |
+
'model': deepcopy(de_parallel(model)).half(),
|
376 |
+
'ema': deepcopy(ema.ema).half(),
|
377 |
+
'updates': ema.updates,
|
378 |
+
'optimizer': optimizer.state_dict(),
|
379 |
+
'opt': vars(opt),
|
380 |
+
'git': GIT_INFO, # {remote, branch, commit} if a git repo
|
381 |
+
'date': datetime.now().isoformat()}
|
382 |
+
|
383 |
+
# Save last, best and delete
|
384 |
+
torch.save(ckpt, last)
|
385 |
+
if best_fitness == fi:
|
386 |
+
torch.save(ckpt, best)
|
387 |
+
if opt.save_period > 0 and epoch % opt.save_period == 0:
|
388 |
+
torch.save(ckpt, w / f'epoch{epoch}.pt')
|
389 |
+
del ckpt
|
390 |
+
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
|
391 |
+
|
392 |
+
# EarlyStopping
|
393 |
+
if RANK != -1: # if DDP training
|
394 |
+
broadcast_list = [stop if RANK == 0 else None]
|
395 |
+
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
|
396 |
+
if RANK != 0:
|
397 |
+
stop = broadcast_list[0]
|
398 |
+
if stop:
|
399 |
+
break # must break all DDP ranks
|
400 |
+
|
401 |
+
# end epoch ----------------------------------------------------------------------------------------------------
|
402 |
+
# end training -----------------------------------------------------------------------------------------------------
|
403 |
+
if RANK in {-1, 0}:
|
404 |
+
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
405 |
+
for f in last, best:
|
406 |
+
if f.exists():
|
407 |
+
strip_optimizer(f) # strip optimizers
|
408 |
+
if f is best:
|
409 |
+
LOGGER.info(f'\nValidating {f}...')
|
410 |
+
results, _, _ = validate.run(
|
411 |
+
data_dict,
|
412 |
+
batch_size=batch_size // WORLD_SIZE * 2,
|
413 |
+
imgsz=imgsz,
|
414 |
+
model=attempt_load(f, device).half(),
|
415 |
+
single_cls=single_cls,
|
416 |
+
dataloader=val_loader,
|
417 |
+
save_dir=save_dir,
|
418 |
+
save_json=is_coco,
|
419 |
+
verbose=True,
|
420 |
+
plots=plots,
|
421 |
+
callbacks=callbacks,
|
422 |
+
compute_loss=compute_loss) # val best model with plots
|
423 |
+
if is_coco:
|
424 |
+
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
|
425 |
+
|
426 |
+
callbacks.run('on_train_end', last, best, epoch, results)
|
427 |
+
|
428 |
+
torch.cuda.empty_cache()
|
429 |
+
return results
|
430 |
+
|
431 |
+
|
432 |
+
def parse_opt(known=False):
|
433 |
+
parser = argparse.ArgumentParser()
|
434 |
+
# parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='initial weights path')
|
435 |
+
# parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
436 |
+
parser.add_argument('--weights', type=str, default='', help='initial weights path')
|
437 |
+
parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml path')
|
438 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
|
439 |
+
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-high.yaml', help='hyperparameters path')
|
440 |
+
parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
|
441 |
+
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
|
442 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
|
443 |
+
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
444 |
+
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
445 |
+
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
446 |
+
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
447 |
+
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
|
448 |
+
parser.add_argument('--noplots', action='store_true', help='save no plot files')
|
449 |
+
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
450 |
+
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
451 |
+
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
|
452 |
+
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
453 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
454 |
+
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
455 |
+
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
456 |
+
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
|
457 |
+
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
458 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
459 |
+
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
|
460 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
461 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
462 |
+
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
463 |
+
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
|
464 |
+
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
465 |
+
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
466 |
+
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
|
467 |
+
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
|
468 |
+
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
469 |
+
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
470 |
+
parser.add_argument('--min-items', type=int, default=0, help='Experimental')
|
471 |
+
parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
|
472 |
+
|
473 |
+
# Logger arguments
|
474 |
+
parser.add_argument('--entity', default=None, help='Entity')
|
475 |
+
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
|
476 |
+
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
|
477 |
+
parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
|
478 |
+
|
479 |
+
return parser.parse_known_args()[0] if known else parser.parse_args()
|
480 |
+
|
481 |
+
|
482 |
+
def main(opt, callbacks=Callbacks()):
|
483 |
+
# Checks
|
484 |
+
if RANK in {-1, 0}:
|
485 |
+
print_args(vars(opt))
|
486 |
+
#check_git_status()
|
487 |
+
#check_requirements()
|
488 |
+
|
489 |
+
# Resume (from specified or most recent last.pt)
|
490 |
+
if opt.resume and not check_comet_resume(opt) and not opt.evolve:
|
491 |
+
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
|
492 |
+
opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
|
493 |
+
opt_data = opt.data # original dataset
|
494 |
+
if opt_yaml.is_file():
|
495 |
+
with open(opt_yaml, errors='ignore') as f:
|
496 |
+
d = yaml.safe_load(f)
|
497 |
+
else:
|
498 |
+
d = torch.load(last, map_location='cpu')['opt']
|
499 |
+
opt = argparse.Namespace(**d) # replace
|
500 |
+
opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
|
501 |
+
if is_url(opt_data):
|
502 |
+
opt.data = check_file(opt_data) # avoid HUB resume auth timeout
|
503 |
+
else:
|
504 |
+
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
|
505 |
+
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
|
506 |
+
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
507 |
+
if opt.evolve:
|
508 |
+
if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
|
509 |
+
opt.project = str(ROOT / 'runs/evolve')
|
510 |
+
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
|
511 |
+
if opt.name == 'cfg':
|
512 |
+
opt.name = Path(opt.cfg).stem # use model.yaml as name
|
513 |
+
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
514 |
+
|
515 |
+
# DDP mode
|
516 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
517 |
+
if LOCAL_RANK != -1:
|
518 |
+
msg = 'is not compatible with YOLO Multi-GPU DDP training'
|
519 |
+
assert not opt.image_weights, f'--image-weights {msg}'
|
520 |
+
assert not opt.evolve, f'--evolve {msg}'
|
521 |
+
assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
|
522 |
+
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
|
523 |
+
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
|
524 |
+
torch.cuda.set_device(LOCAL_RANK)
|
525 |
+
device = torch.device('cuda', LOCAL_RANK)
|
526 |
+
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
527 |
+
|
528 |
+
# Train
|
529 |
+
if not opt.evolve:
|
530 |
+
train(opt.hyp, opt, device, callbacks)
|
531 |
+
|
532 |
+
# Evolve hyperparameters (optional)
|
533 |
+
else:
|
534 |
+
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
535 |
+
meta = {
|
536 |
+
'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
537 |
+
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
538 |
+
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
539 |
+
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
540 |
+
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
541 |
+
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
542 |
+
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
543 |
+
'box': (1, 0.02, 0.2), # box loss gain
|
544 |
+
'cls': (1, 0.2, 4.0), # cls loss gain
|
545 |
+
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
546 |
+
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
547 |
+
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
548 |
+
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
549 |
+
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
550 |
+
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
551 |
+
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
552 |
+
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
553 |
+
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
554 |
+
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
555 |
+
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
556 |
+
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
557 |
+
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
558 |
+
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
559 |
+
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
560 |
+
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
561 |
+
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
562 |
+
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
563 |
+
'mixup': (1, 0.0, 1.0), # image mixup (probability)
|
564 |
+
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
|
565 |
+
|
566 |
+
with open(opt.hyp, errors='ignore') as f:
|
567 |
+
hyp = yaml.safe_load(f) # load hyps dict
|
568 |
+
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
569 |
+
hyp['anchors'] = 3
|
570 |
+
if opt.noautoanchor:
|
571 |
+
del hyp['anchors'], meta['anchors']
|
572 |
+
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
573 |
+
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
574 |
+
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
|
575 |
+
if opt.bucket:
|
576 |
+
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
|
577 |
+
|
578 |
+
for _ in range(opt.evolve): # generations to evolve
|
579 |
+
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
580 |
+
# Select parent(s)
|
581 |
+
parent = 'single' # parent selection method: 'single' or 'weighted'
|
582 |
+
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
|
583 |
+
n = min(5, len(x)) # number of previous results to consider
|
584 |
+
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
585 |
+
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
|
586 |
+
if parent == 'single' or len(x) == 1:
|
587 |
+
# x = x[random.randint(0, n - 1)] # random selection
|
588 |
+
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
589 |
+
elif parent == 'weighted':
|
590 |
+
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
591 |
+
|
592 |
+
# Mutate
|
593 |
+
mp, s = 0.8, 0.2 # mutation probability, sigma
|
594 |
+
npr = np.random
|
595 |
+
npr.seed(int(time.time()))
|
596 |
+
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
|
597 |
+
ng = len(meta)
|
598 |
+
v = np.ones(ng)
|
599 |
+
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
600 |
+
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
601 |
+
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
602 |
+
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
603 |
+
|
604 |
+
# Constrain to limits
|
605 |
+
for k, v in meta.items():
|
606 |
+
hyp[k] = max(hyp[k], v[1]) # lower limit
|
607 |
+
hyp[k] = min(hyp[k], v[2]) # upper limit
|
608 |
+
hyp[k] = round(hyp[k], 5) # significant digits
|
609 |
+
|
610 |
+
# Train mutation
|
611 |
+
results = train(hyp.copy(), opt, device, callbacks)
|
612 |
+
callbacks = Callbacks()
|
613 |
+
# Write mutation results
|
614 |
+
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
|
615 |
+
'val/obj_loss', 'val/cls_loss')
|
616 |
+
print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
|
617 |
+
|
618 |
+
# Plot results
|
619 |
+
plot_evolve(evolve_csv)
|
620 |
+
LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
|
621 |
+
f"Results saved to {colorstr('bold', save_dir)}\n"
|
622 |
+
f'Usage example: $ python train.py --hyp {evolve_yaml}')
|
623 |
+
|
624 |
+
|
625 |
+
def run(**kwargs):
|
626 |
+
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolo.pt')
|
627 |
+
opt = parse_opt(True)
|
628 |
+
for k, v in kwargs.items():
|
629 |
+
setattr(opt, k, v)
|
630 |
+
main(opt)
|
631 |
+
return opt
|
632 |
+
|
633 |
+
|
634 |
+
if __name__ == "__main__":
|
635 |
+
opt = parse_opt()
|
636 |
+
main(opt)
|
val.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
FILE = Path(__file__).resolve()
|
12 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
13 |
+
if str(ROOT) not in sys.path:
|
14 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
15 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
16 |
+
|
17 |
+
from models.common import DetectMultiBackend
|
18 |
+
from utils.callbacks import Callbacks
|
19 |
+
from utils.dataloaders import create_dataloader
|
20 |
+
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
|
21 |
+
check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
|
22 |
+
print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
|
23 |
+
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
|
24 |
+
from utils.plots import output_to_target, plot_images, plot_val_study
|
25 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
26 |
+
|
27 |
+
|
28 |
+
def save_one_txt(predn, save_conf, shape, file):
|
29 |
+
# Save one txt result
|
30 |
+
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
31 |
+
for *xyxy, conf, cls in predn.tolist():
|
32 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
33 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
34 |
+
with open(file, 'a') as f:
|
35 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
36 |
+
|
37 |
+
|
38 |
+
def save_one_json(predn, jdict, path, class_map):
|
39 |
+
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
40 |
+
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
41 |
+
box = xyxy2xywh(predn[:, :4]) # xywh
|
42 |
+
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
43 |
+
for p, b in zip(predn.tolist(), box.tolist()):
|
44 |
+
jdict.append({
|
45 |
+
'image_id': image_id,
|
46 |
+
'category_id': class_map[int(p[5])],
|
47 |
+
'bbox': [round(x, 3) for x in b],
|
48 |
+
'score': round(p[4], 5)})
|
49 |
+
|
50 |
+
|
51 |
+
def process_batch(detections, labels, iouv):
|
52 |
+
"""
|
53 |
+
Return correct prediction matrix
|
54 |
+
Arguments:
|
55 |
+
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
56 |
+
labels (array[M, 5]), class, x1, y1, x2, y2
|
57 |
+
Returns:
|
58 |
+
correct (array[N, 10]), for 10 IoU levels
|
59 |
+
"""
|
60 |
+
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
61 |
+
iou = box_iou(labels[:, 1:], detections[:, :4])
|
62 |
+
correct_class = labels[:, 0:1] == detections[:, 5]
|
63 |
+
for i in range(len(iouv)):
|
64 |
+
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
65 |
+
if x[0].shape[0]:
|
66 |
+
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
|
67 |
+
if x[0].shape[0] > 1:
|
68 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
69 |
+
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
70 |
+
# matches = matches[matches[:, 2].argsort()[::-1]]
|
71 |
+
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
72 |
+
correct[matches[:, 1].astype(int), i] = True
|
73 |
+
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
74 |
+
|
75 |
+
|
76 |
+
@smart_inference_mode()
|
77 |
+
def run(
|
78 |
+
data,
|
79 |
+
weights=None, # model.pt path(s)
|
80 |
+
batch_size=32, # batch size
|
81 |
+
imgsz=640, # inference size (pixels)
|
82 |
+
conf_thres=0.001, # confidence threshold
|
83 |
+
iou_thres=0.7, # NMS IoU threshold
|
84 |
+
max_det=300, # maximum detections per image
|
85 |
+
task='val', # train, val, test, speed or study
|
86 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
87 |
+
workers=8, # max dataloader workers (per RANK in DDP mode)
|
88 |
+
single_cls=False, # treat as single-class dataset
|
89 |
+
augment=False, # augmented inference
|
90 |
+
verbose=False, # verbose output
|
91 |
+
save_txt=False, # save results to *.txt
|
92 |
+
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
93 |
+
save_conf=False, # save confidences in --save-txt labels
|
94 |
+
save_json=False, # save a COCO-JSON results file
|
95 |
+
project=ROOT / 'runs/val', # save to project/name
|
96 |
+
name='exp', # save to project/name
|
97 |
+
exist_ok=False, # existing project/name ok, do not increment
|
98 |
+
half=True, # use FP16 half-precision inference
|
99 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
100 |
+
min_items=0, # Experimental
|
101 |
+
model=None,
|
102 |
+
dataloader=None,
|
103 |
+
save_dir=Path(''),
|
104 |
+
plots=True,
|
105 |
+
callbacks=Callbacks(),
|
106 |
+
compute_loss=None,
|
107 |
+
):
|
108 |
+
# Initialize/load model and set device
|
109 |
+
training = model is not None
|
110 |
+
if training: # called by train.py
|
111 |
+
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
112 |
+
half &= device.type != 'cpu' # half precision only supported on CUDA
|
113 |
+
model.half() if half else model.float()
|
114 |
+
else: # called directly
|
115 |
+
device = select_device(device, batch_size=batch_size)
|
116 |
+
|
117 |
+
# Directories
|
118 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
119 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
120 |
+
|
121 |
+
# Load model
|
122 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
123 |
+
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
124 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
125 |
+
half = model.fp16 # FP16 supported on limited backends with CUDA
|
126 |
+
if engine:
|
127 |
+
batch_size = model.batch_size
|
128 |
+
else:
|
129 |
+
device = model.device
|
130 |
+
if not (pt or jit):
|
131 |
+
batch_size = 1 # export.py models default to batch-size 1
|
132 |
+
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
133 |
+
|
134 |
+
# Data
|
135 |
+
data = check_dataset(data) # check
|
136 |
+
|
137 |
+
# Configure
|
138 |
+
model.eval()
|
139 |
+
cuda = device.type != 'cpu'
|
140 |
+
#is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
|
141 |
+
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset
|
142 |
+
nc = 1 if single_cls else int(data['nc']) # number of classes
|
143 |
+
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
|
144 |
+
niou = iouv.numel()
|
145 |
+
|
146 |
+
# Dataloader
|
147 |
+
if not training:
|
148 |
+
if pt and not single_cls: # check --weights are trained on --data
|
149 |
+
ncm = model.model.nc
|
150 |
+
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
|
151 |
+
f'classes). Pass correct combination of --weights and --data that are trained together.'
|
152 |
+
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
|
153 |
+
pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
|
154 |
+
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
155 |
+
dataloader = create_dataloader(data[task],
|
156 |
+
imgsz,
|
157 |
+
batch_size,
|
158 |
+
stride,
|
159 |
+
single_cls,
|
160 |
+
pad=pad,
|
161 |
+
rect=rect,
|
162 |
+
workers=workers,
|
163 |
+
min_items=opt.min_items,
|
164 |
+
prefix=colorstr(f'{task}: '))[0]
|
165 |
+
|
166 |
+
seen = 0
|
167 |
+
confusion_matrix = ConfusionMatrix(nc=nc)
|
168 |
+
names = model.names if hasattr(model, 'names') else model.module.names # get class names
|
169 |
+
if isinstance(names, (list, tuple)): # old format
|
170 |
+
names = dict(enumerate(names))
|
171 |
+
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
172 |
+
s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
|
173 |
+
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
174 |
+
dt = Profile(), Profile(), Profile() # profiling times
|
175 |
+
loss = torch.zeros(3, device=device)
|
176 |
+
jdict, stats, ap, ap_class = [], [], [], []
|
177 |
+
callbacks.run('on_val_start')
|
178 |
+
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
|
179 |
+
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
|
180 |
+
callbacks.run('on_val_batch_start')
|
181 |
+
with dt[0]:
|
182 |
+
if cuda:
|
183 |
+
im = im.to(device, non_blocking=True)
|
184 |
+
targets = targets.to(device)
|
185 |
+
im = im.half() if half else im.float() # uint8 to fp16/32
|
186 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
187 |
+
nb, _, height, width = im.shape # batch size, channels, height, width
|
188 |
+
|
189 |
+
# Inference
|
190 |
+
with dt[1]:
|
191 |
+
preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
|
192 |
+
|
193 |
+
# Loss
|
194 |
+
if compute_loss:
|
195 |
+
loss += compute_loss(train_out, targets)[1] # box, obj, cls
|
196 |
+
|
197 |
+
# NMS
|
198 |
+
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
|
199 |
+
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
200 |
+
with dt[2]:
|
201 |
+
preds = non_max_suppression(preds,
|
202 |
+
conf_thres,
|
203 |
+
iou_thres,
|
204 |
+
labels=lb,
|
205 |
+
multi_label=True,
|
206 |
+
agnostic=single_cls,
|
207 |
+
max_det=max_det)
|
208 |
+
|
209 |
+
# Metrics
|
210 |
+
for si, pred in enumerate(preds):
|
211 |
+
labels = targets[targets[:, 0] == si, 1:]
|
212 |
+
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
213 |
+
path, shape = Path(paths[si]), shapes[si][0]
|
214 |
+
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
215 |
+
seen += 1
|
216 |
+
|
217 |
+
if npr == 0:
|
218 |
+
if nl:
|
219 |
+
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
|
220 |
+
if plots:
|
221 |
+
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
222 |
+
continue
|
223 |
+
|
224 |
+
# Predictions
|
225 |
+
if single_cls:
|
226 |
+
pred[:, 5] = 0
|
227 |
+
predn = pred.clone()
|
228 |
+
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
|
229 |
+
|
230 |
+
# Evaluate
|
231 |
+
if nl:
|
232 |
+
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
233 |
+
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
|
234 |
+
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
235 |
+
correct = process_batch(predn, labelsn, iouv)
|
236 |
+
if plots:
|
237 |
+
confusion_matrix.process_batch(predn, labelsn)
|
238 |
+
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
|
239 |
+
|
240 |
+
# Save/log
|
241 |
+
if save_txt:
|
242 |
+
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
243 |
+
if save_json:
|
244 |
+
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
|
245 |
+
callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
246 |
+
|
247 |
+
# Plot images
|
248 |
+
if plots and batch_i < 3:
|
249 |
+
plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
|
250 |
+
plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
|
251 |
+
|
252 |
+
callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
|
253 |
+
|
254 |
+
# Compute metrics
|
255 |
+
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
|
256 |
+
if len(stats) and stats[0].any():
|
257 |
+
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
258 |
+
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
259 |
+
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
260 |
+
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
|
261 |
+
|
262 |
+
# Print results
|
263 |
+
pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
|
264 |
+
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
265 |
+
if nt.sum() == 0:
|
266 |
+
LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
|
267 |
+
|
268 |
+
# Print results per class
|
269 |
+
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
270 |
+
for i, c in enumerate(ap_class):
|
271 |
+
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
272 |
+
|
273 |
+
# Print speeds
|
274 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
275 |
+
if not training:
|
276 |
+
shape = (batch_size, 3, imgsz, imgsz)
|
277 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
|
278 |
+
|
279 |
+
# Plots
|
280 |
+
if plots:
|
281 |
+
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
282 |
+
callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
283 |
+
|
284 |
+
# Save JSON
|
285 |
+
if save_json and len(jdict):
|
286 |
+
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
287 |
+
anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
|
288 |
+
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
289 |
+
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
|
290 |
+
with open(pred_json, 'w') as f:
|
291 |
+
json.dump(jdict, f)
|
292 |
+
|
293 |
+
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
294 |
+
check_requirements('pycocotools')
|
295 |
+
from pycocotools.coco import COCO
|
296 |
+
from pycocotools.cocoeval import COCOeval
|
297 |
+
|
298 |
+
anno = COCO(anno_json) # init annotations api
|
299 |
+
pred = anno.loadRes(pred_json) # init predictions api
|
300 |
+
eval = COCOeval(anno, pred, 'bbox')
|
301 |
+
if is_coco:
|
302 |
+
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
|
303 |
+
eval.evaluate()
|
304 |
+
eval.accumulate()
|
305 |
+
eval.summarize()
|
306 |
+
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
307 |
+
except Exception as e:
|
308 |
+
LOGGER.info(f'pycocotools unable to run: {e}')
|
309 |
+
|
310 |
+
# Return results
|
311 |
+
model.float() # for training
|
312 |
+
if not training:
|
313 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
314 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
315 |
+
maps = np.zeros(nc) + map
|
316 |
+
for i, c in enumerate(ap_class):
|
317 |
+
maps[c] = ap[i]
|
318 |
+
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
319 |
+
|
320 |
+
|
321 |
+
def parse_opt():
|
322 |
+
parser = argparse.ArgumentParser()
|
323 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
|
324 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path(s)')
|
325 |
+
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
|
326 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
327 |
+
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
|
328 |
+
parser.add_argument('--iou-thres', type=float, default=0.7, help='NMS IoU threshold')
|
329 |
+
parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
|
330 |
+
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
|
331 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
332 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
333 |
+
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
334 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
335 |
+
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
336 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
337 |
+
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
338 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
339 |
+
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
|
340 |
+
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
|
341 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
342 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
343 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
344 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
345 |
+
parser.add_argument('--min-items', type=int, default=0, help='Experimental')
|
346 |
+
opt = parser.parse_args()
|
347 |
+
opt.data = check_yaml(opt.data) # check YAML
|
348 |
+
opt.save_json |= opt.data.endswith('coco.yaml')
|
349 |
+
opt.save_txt |= opt.save_hybrid
|
350 |
+
print_args(vars(opt))
|
351 |
+
return opt
|
352 |
+
|
353 |
+
|
354 |
+
def main(opt):
|
355 |
+
#check_requirements(exclude=('tensorboard', 'thop'))
|
356 |
+
|
357 |
+
if opt.task in ('train', 'val', 'test'): # run normally
|
358 |
+
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
|
359 |
+
LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
|
360 |
+
if opt.save_hybrid:
|
361 |
+
LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
|
362 |
+
run(**vars(opt))
|
363 |
+
|
364 |
+
else:
|
365 |
+
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
|
366 |
+
opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
|
367 |
+
if opt.task == 'speed': # speed benchmarks
|
368 |
+
# python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
|
369 |
+
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
|
370 |
+
for opt.weights in weights:
|
371 |
+
run(**vars(opt), plots=False)
|
372 |
+
|
373 |
+
elif opt.task == 'study': # speed vs mAP benchmarks
|
374 |
+
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
|
375 |
+
for opt.weights in weights:
|
376 |
+
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
|
377 |
+
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
|
378 |
+
for opt.imgsz in x: # img-size
|
379 |
+
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
|
380 |
+
r, _, t = run(**vars(opt), plots=False)
|
381 |
+
y.append(r + t) # results and times
|
382 |
+
np.savetxt(f, y, fmt='%10.4g') # save
|
383 |
+
os.system('zip -r study.zip study_*.txt')
|
384 |
+
plot_val_study(x=x) # plot
|
385 |
+
|
386 |
+
|
387 |
+
if __name__ == "__main__":
|
388 |
+
opt = parse_opt()
|
389 |
+
main(opt)
|
val_dual.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
FILE = Path(__file__).resolve()
|
12 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
13 |
+
if str(ROOT) not in sys.path:
|
14 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
15 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
16 |
+
|
17 |
+
from models.common import DetectMultiBackend
|
18 |
+
from utils.callbacks import Callbacks
|
19 |
+
from utils.dataloaders import create_dataloader
|
20 |
+
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
|
21 |
+
check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
|
22 |
+
print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
|
23 |
+
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
|
24 |
+
from utils.plots import output_to_target, plot_images, plot_val_study
|
25 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
26 |
+
|
27 |
+
|
28 |
+
def save_one_txt(predn, save_conf, shape, file):
|
29 |
+
# Save one txt result
|
30 |
+
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
31 |
+
for *xyxy, conf, cls in predn.tolist():
|
32 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
33 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
34 |
+
with open(file, 'a') as f:
|
35 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
36 |
+
|
37 |
+
|
38 |
+
def save_one_json(predn, jdict, path, class_map):
|
39 |
+
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
40 |
+
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
41 |
+
box = xyxy2xywh(predn[:, :4]) # xywh
|
42 |
+
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
43 |
+
for p, b in zip(predn.tolist(), box.tolist()):
|
44 |
+
jdict.append({
|
45 |
+
'image_id': image_id,
|
46 |
+
'category_id': class_map[int(p[5])],
|
47 |
+
'bbox': [round(x, 3) for x in b],
|
48 |
+
'score': round(p[4], 5)})
|
49 |
+
|
50 |
+
|
51 |
+
def process_batch(detections, labels, iouv):
|
52 |
+
"""
|
53 |
+
Return correct prediction matrix
|
54 |
+
Arguments:
|
55 |
+
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
56 |
+
labels (array[M, 5]), class, x1, y1, x2, y2
|
57 |
+
Returns:
|
58 |
+
correct (array[N, 10]), for 10 IoU levels
|
59 |
+
"""
|
60 |
+
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
61 |
+
iou = box_iou(labels[:, 1:], detections[:, :4])
|
62 |
+
correct_class = labels[:, 0:1] == detections[:, 5]
|
63 |
+
for i in range(len(iouv)):
|
64 |
+
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
65 |
+
if x[0].shape[0]:
|
66 |
+
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
|
67 |
+
if x[0].shape[0] > 1:
|
68 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
69 |
+
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
70 |
+
# matches = matches[matches[:, 2].argsort()[::-1]]
|
71 |
+
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
72 |
+
correct[matches[:, 1].astype(int), i] = True
|
73 |
+
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
74 |
+
|
75 |
+
|
76 |
+
@smart_inference_mode()
|
77 |
+
def run(
|
78 |
+
data,
|
79 |
+
weights=None, # model.pt path(s)
|
80 |
+
batch_size=32, # batch size
|
81 |
+
imgsz=640, # inference size (pixels)
|
82 |
+
conf_thres=0.001, # confidence threshold
|
83 |
+
iou_thres=0.7, # NMS IoU threshold
|
84 |
+
max_det=300, # maximum detections per image
|
85 |
+
task='val', # train, val, test, speed or study
|
86 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
87 |
+
workers=8, # max dataloader workers (per RANK in DDP mode)
|
88 |
+
single_cls=False, # treat as single-class dataset
|
89 |
+
augment=False, # augmented inference
|
90 |
+
verbose=False, # verbose output
|
91 |
+
save_txt=False, # save results to *.txt
|
92 |
+
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
93 |
+
save_conf=False, # save confidences in --save-txt labels
|
94 |
+
save_json=False, # save a COCO-JSON results file
|
95 |
+
project=ROOT / 'runs/val', # save to project/name
|
96 |
+
name='exp', # save to project/name
|
97 |
+
exist_ok=False, # existing project/name ok, do not increment
|
98 |
+
half=True, # use FP16 half-precision inference
|
99 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
100 |
+
min_items=0, # Experimental
|
101 |
+
model=None,
|
102 |
+
dataloader=None,
|
103 |
+
save_dir=Path(''),
|
104 |
+
plots=True,
|
105 |
+
callbacks=Callbacks(),
|
106 |
+
compute_loss=None,
|
107 |
+
):
|
108 |
+
# Initialize/load model and set device
|
109 |
+
training = model is not None
|
110 |
+
if training: # called by train.py
|
111 |
+
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
112 |
+
half &= device.type != 'cpu' # half precision only supported on CUDA
|
113 |
+
model.half() if half else model.float()
|
114 |
+
else: # called directly
|
115 |
+
device = select_device(device, batch_size=batch_size)
|
116 |
+
|
117 |
+
# Directories
|
118 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
119 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
120 |
+
|
121 |
+
# Load model
|
122 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
123 |
+
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
124 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
125 |
+
half = model.fp16 # FP16 supported on limited backends with CUDA
|
126 |
+
if engine:
|
127 |
+
batch_size = model.batch_size
|
128 |
+
else:
|
129 |
+
device = model.device
|
130 |
+
if not (pt or jit):
|
131 |
+
batch_size = 1 # export.py models default to batch-size 1
|
132 |
+
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
133 |
+
|
134 |
+
# Data
|
135 |
+
data = check_dataset(data) # check
|
136 |
+
|
137 |
+
# Configure
|
138 |
+
model.eval()
|
139 |
+
cuda = device.type != 'cpu'
|
140 |
+
#is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
|
141 |
+
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset
|
142 |
+
nc = 1 if single_cls else int(data['nc']) # number of classes
|
143 |
+
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
|
144 |
+
niou = iouv.numel()
|
145 |
+
|
146 |
+
# Dataloader
|
147 |
+
if not training:
|
148 |
+
if pt and not single_cls: # check --weights are trained on --data
|
149 |
+
ncm = model.model.nc
|
150 |
+
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
|
151 |
+
f'classes). Pass correct combination of --weights and --data that are trained together.'
|
152 |
+
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
|
153 |
+
pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
|
154 |
+
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
155 |
+
dataloader = create_dataloader(data[task],
|
156 |
+
imgsz,
|
157 |
+
batch_size,
|
158 |
+
stride,
|
159 |
+
single_cls,
|
160 |
+
pad=pad,
|
161 |
+
rect=rect,
|
162 |
+
workers=workers,
|
163 |
+
min_items=opt.min_items,
|
164 |
+
prefix=colorstr(f'{task}: '))[0]
|
165 |
+
|
166 |
+
seen = 0
|
167 |
+
confusion_matrix = ConfusionMatrix(nc=nc)
|
168 |
+
names = model.names if hasattr(model, 'names') else model.module.names # get class names
|
169 |
+
if isinstance(names, (list, tuple)): # old format
|
170 |
+
names = dict(enumerate(names))
|
171 |
+
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
172 |
+
s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
|
173 |
+
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
174 |
+
dt = Profile(), Profile(), Profile() # profiling times
|
175 |
+
loss = torch.zeros(3, device=device)
|
176 |
+
jdict, stats, ap, ap_class = [], [], [], []
|
177 |
+
callbacks.run('on_val_start')
|
178 |
+
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
|
179 |
+
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
|
180 |
+
callbacks.run('on_val_batch_start')
|
181 |
+
with dt[0]:
|
182 |
+
if cuda:
|
183 |
+
im = im.to(device, non_blocking=True)
|
184 |
+
targets = targets.to(device)
|
185 |
+
im = im.half() if half else im.float() # uint8 to fp16/32
|
186 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
187 |
+
nb, _, height, width = im.shape # batch size, channels, height, width
|
188 |
+
|
189 |
+
# Inference
|
190 |
+
with dt[1]:
|
191 |
+
preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
|
192 |
+
|
193 |
+
# Loss
|
194 |
+
if compute_loss:
|
195 |
+
preds = preds[1]
|
196 |
+
#train_out = train_out[1]
|
197 |
+
#loss += compute_loss(train_out, targets)[1] # box, obj, cls
|
198 |
+
else:
|
199 |
+
preds = preds[0][1]
|
200 |
+
|
201 |
+
# NMS
|
202 |
+
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
|
203 |
+
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
204 |
+
with dt[2]:
|
205 |
+
preds = non_max_suppression(preds,
|
206 |
+
conf_thres,
|
207 |
+
iou_thres,
|
208 |
+
labels=lb,
|
209 |
+
multi_label=True,
|
210 |
+
agnostic=single_cls,
|
211 |
+
max_det=max_det)
|
212 |
+
|
213 |
+
# Metrics
|
214 |
+
for si, pred in enumerate(preds):
|
215 |
+
labels = targets[targets[:, 0] == si, 1:]
|
216 |
+
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
217 |
+
path, shape = Path(paths[si]), shapes[si][0]
|
218 |
+
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
219 |
+
seen += 1
|
220 |
+
|
221 |
+
if npr == 0:
|
222 |
+
if nl:
|
223 |
+
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
|
224 |
+
if plots:
|
225 |
+
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
226 |
+
continue
|
227 |
+
|
228 |
+
# Predictions
|
229 |
+
if single_cls:
|
230 |
+
pred[:, 5] = 0
|
231 |
+
predn = pred.clone()
|
232 |
+
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
|
233 |
+
|
234 |
+
# Evaluate
|
235 |
+
if nl:
|
236 |
+
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
237 |
+
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
|
238 |
+
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
239 |
+
correct = process_batch(predn, labelsn, iouv)
|
240 |
+
if plots:
|
241 |
+
confusion_matrix.process_batch(predn, labelsn)
|
242 |
+
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
|
243 |
+
|
244 |
+
# Save/log
|
245 |
+
if save_txt:
|
246 |
+
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
247 |
+
if save_json:
|
248 |
+
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
|
249 |
+
callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
250 |
+
|
251 |
+
# Plot images
|
252 |
+
if plots and batch_i < 3:
|
253 |
+
plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
|
254 |
+
plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
|
255 |
+
|
256 |
+
callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
|
257 |
+
|
258 |
+
# Compute metrics
|
259 |
+
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
|
260 |
+
if len(stats) and stats[0].any():
|
261 |
+
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
262 |
+
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
263 |
+
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
264 |
+
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
|
265 |
+
|
266 |
+
# Print results
|
267 |
+
pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
|
268 |
+
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
269 |
+
if nt.sum() == 0:
|
270 |
+
LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
|
271 |
+
|
272 |
+
# Print results per class
|
273 |
+
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
274 |
+
for i, c in enumerate(ap_class):
|
275 |
+
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
276 |
+
|
277 |
+
# Print speeds
|
278 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
279 |
+
if not training:
|
280 |
+
shape = (batch_size, 3, imgsz, imgsz)
|
281 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
|
282 |
+
|
283 |
+
# Plots
|
284 |
+
if plots:
|
285 |
+
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
286 |
+
callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
287 |
+
|
288 |
+
# Save JSON
|
289 |
+
if save_json and len(jdict):
|
290 |
+
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
291 |
+
anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
|
292 |
+
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
293 |
+
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
|
294 |
+
with open(pred_json, 'w') as f:
|
295 |
+
json.dump(jdict, f)
|
296 |
+
|
297 |
+
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
298 |
+
check_requirements('pycocotools')
|
299 |
+
from pycocotools.coco import COCO
|
300 |
+
from pycocotools.cocoeval import COCOeval
|
301 |
+
|
302 |
+
anno = COCO(anno_json) # init annotations api
|
303 |
+
pred = anno.loadRes(pred_json) # init predictions api
|
304 |
+
eval = COCOeval(anno, pred, 'bbox')
|
305 |
+
if is_coco:
|
306 |
+
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
|
307 |
+
eval.evaluate()
|
308 |
+
eval.accumulate()
|
309 |
+
eval.summarize()
|
310 |
+
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
311 |
+
except Exception as e:
|
312 |
+
LOGGER.info(f'pycocotools unable to run: {e}')
|
313 |
+
|
314 |
+
# Return results
|
315 |
+
model.float() # for training
|
316 |
+
if not training:
|
317 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
318 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
319 |
+
maps = np.zeros(nc) + map
|
320 |
+
for i, c in enumerate(ap_class):
|
321 |
+
maps[c] = ap[i]
|
322 |
+
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
323 |
+
|
324 |
+
|
325 |
+
def parse_opt():
|
326 |
+
parser = argparse.ArgumentParser()
|
327 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
|
328 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path(s)')
|
329 |
+
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
|
330 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
331 |
+
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
|
332 |
+
parser.add_argument('--iou-thres', type=float, default=0.7, help='NMS IoU threshold')
|
333 |
+
parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
|
334 |
+
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
|
335 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
336 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
337 |
+
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
338 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
339 |
+
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
340 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
341 |
+
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
342 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
343 |
+
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
|
344 |
+
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
|
345 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
346 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
347 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
348 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
349 |
+
parser.add_argument('--min-items', type=int, default=0, help='Experimental')
|
350 |
+
opt = parser.parse_args()
|
351 |
+
opt.data = check_yaml(opt.data) # check YAML
|
352 |
+
opt.save_json |= opt.data.endswith('coco.yaml')
|
353 |
+
opt.save_txt |= opt.save_hybrid
|
354 |
+
print_args(vars(opt))
|
355 |
+
return opt
|
356 |
+
|
357 |
+
|
358 |
+
def main(opt):
|
359 |
+
#check_requirements(exclude=('tensorboard', 'thop'))
|
360 |
+
|
361 |
+
if opt.task in ('train', 'val', 'test'): # run normally
|
362 |
+
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
|
363 |
+
LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
|
364 |
+
if opt.save_hybrid:
|
365 |
+
LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
|
366 |
+
run(**vars(opt))
|
367 |
+
|
368 |
+
else:
|
369 |
+
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
|
370 |
+
opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
|
371 |
+
if opt.task == 'speed': # speed benchmarks
|
372 |
+
# python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
|
373 |
+
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
|
374 |
+
for opt.weights in weights:
|
375 |
+
run(**vars(opt), plots=False)
|
376 |
+
|
377 |
+
elif opt.task == 'study': # speed vs mAP benchmarks
|
378 |
+
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
|
379 |
+
for opt.weights in weights:
|
380 |
+
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
|
381 |
+
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
|
382 |
+
for opt.imgsz in x: # img-size
|
383 |
+
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
|
384 |
+
r, _, t = run(**vars(opt), plots=False)
|
385 |
+
y.append(r + t) # results and times
|
386 |
+
np.savetxt(f, y, fmt='%10.4g') # save
|
387 |
+
os.system('zip -r study.zip study_*.txt')
|
388 |
+
plot_val_study(x=x) # plot
|
389 |
+
|
390 |
+
|
391 |
+
if __name__ == "__main__":
|
392 |
+
opt = parse_opt()
|
393 |
+
main(opt)
|
val_triple.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
FILE = Path(__file__).resolve()
|
12 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
13 |
+
if str(ROOT) not in sys.path:
|
14 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
15 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
16 |
+
|
17 |
+
from models.common import DetectMultiBackend
|
18 |
+
from utils.callbacks import Callbacks
|
19 |
+
from utils.dataloaders import create_dataloader
|
20 |
+
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
|
21 |
+
check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
|
22 |
+
print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
|
23 |
+
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
|
24 |
+
from utils.plots import output_to_target, plot_images, plot_val_study
|
25 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
26 |
+
|
27 |
+
|
28 |
+
def save_one_txt(predn, save_conf, shape, file):
|
29 |
+
# Save one txt result
|
30 |
+
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
31 |
+
for *xyxy, conf, cls in predn.tolist():
|
32 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
33 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
34 |
+
with open(file, 'a') as f:
|
35 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
36 |
+
|
37 |
+
|
38 |
+
def save_one_json(predn, jdict, path, class_map):
|
39 |
+
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
40 |
+
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
41 |
+
box = xyxy2xywh(predn[:, :4]) # xywh
|
42 |
+
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
43 |
+
for p, b in zip(predn.tolist(), box.tolist()):
|
44 |
+
jdict.append({
|
45 |
+
'image_id': image_id,
|
46 |
+
'category_id': class_map[int(p[5])],
|
47 |
+
'bbox': [round(x, 3) for x in b],
|
48 |
+
'score': round(p[4], 5)})
|
49 |
+
|
50 |
+
|
51 |
+
def process_batch(detections, labels, iouv):
|
52 |
+
"""
|
53 |
+
Return correct prediction matrix
|
54 |
+
Arguments:
|
55 |
+
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
56 |
+
labels (array[M, 5]), class, x1, y1, x2, y2
|
57 |
+
Returns:
|
58 |
+
correct (array[N, 10]), for 10 IoU levels
|
59 |
+
"""
|
60 |
+
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
61 |
+
iou = box_iou(labels[:, 1:], detections[:, :4])
|
62 |
+
correct_class = labels[:, 0:1] == detections[:, 5]
|
63 |
+
for i in range(len(iouv)):
|
64 |
+
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
65 |
+
if x[0].shape[0]:
|
66 |
+
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
|
67 |
+
if x[0].shape[0] > 1:
|
68 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
69 |
+
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
70 |
+
# matches = matches[matches[:, 2].argsort()[::-1]]
|
71 |
+
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
72 |
+
correct[matches[:, 1].astype(int), i] = True
|
73 |
+
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
74 |
+
|
75 |
+
|
76 |
+
@smart_inference_mode()
|
77 |
+
def run(
|
78 |
+
data,
|
79 |
+
weights=None, # model.pt path(s)
|
80 |
+
batch_size=32, # batch size
|
81 |
+
imgsz=640, # inference size (pixels)
|
82 |
+
conf_thres=0.001, # confidence threshold
|
83 |
+
iou_thres=0.7, # NMS IoU threshold
|
84 |
+
max_det=300, # maximum detections per image
|
85 |
+
task='val', # train, val, test, speed or study
|
86 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
87 |
+
workers=8, # max dataloader workers (per RANK in DDP mode)
|
88 |
+
single_cls=False, # treat as single-class dataset
|
89 |
+
augment=False, # augmented inference
|
90 |
+
verbose=False, # verbose output
|
91 |
+
save_txt=False, # save results to *.txt
|
92 |
+
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
93 |
+
save_conf=False, # save confidences in --save-txt labels
|
94 |
+
save_json=False, # save a COCO-JSON results file
|
95 |
+
project=ROOT / 'runs/val', # save to project/name
|
96 |
+
name='exp', # save to project/name
|
97 |
+
exist_ok=False, # existing project/name ok, do not increment
|
98 |
+
half=True, # use FP16 half-precision inference
|
99 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
100 |
+
min_items=0, # Experimental
|
101 |
+
model=None,
|
102 |
+
dataloader=None,
|
103 |
+
save_dir=Path(''),
|
104 |
+
plots=True,
|
105 |
+
callbacks=Callbacks(),
|
106 |
+
compute_loss=None,
|
107 |
+
):
|
108 |
+
# Initialize/load model and set device
|
109 |
+
training = model is not None
|
110 |
+
if training: # called by train.py
|
111 |
+
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
112 |
+
half &= device.type != 'cpu' # half precision only supported on CUDA
|
113 |
+
model.half() if half else model.float()
|
114 |
+
else: # called directly
|
115 |
+
device = select_device(device, batch_size=batch_size)
|
116 |
+
|
117 |
+
# Directories
|
118 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
119 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
120 |
+
|
121 |
+
# Load model
|
122 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
123 |
+
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
124 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
125 |
+
half = model.fp16 # FP16 supported on limited backends with CUDA
|
126 |
+
if engine:
|
127 |
+
batch_size = model.batch_size
|
128 |
+
else:
|
129 |
+
device = model.device
|
130 |
+
if not (pt or jit):
|
131 |
+
batch_size = 1 # export.py models default to batch-size 1
|
132 |
+
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
133 |
+
|
134 |
+
# Data
|
135 |
+
data = check_dataset(data) # check
|
136 |
+
|
137 |
+
# Configure
|
138 |
+
model.eval()
|
139 |
+
cuda = device.type != 'cpu'
|
140 |
+
#is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
|
141 |
+
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset
|
142 |
+
nc = 1 if single_cls else int(data['nc']) # number of classes
|
143 |
+
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
|
144 |
+
niou = iouv.numel()
|
145 |
+
|
146 |
+
# Dataloader
|
147 |
+
if not training:
|
148 |
+
if pt and not single_cls: # check --weights are trained on --data
|
149 |
+
ncm = model.model.nc
|
150 |
+
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
|
151 |
+
f'classes). Pass correct combination of --weights and --data that are trained together.'
|
152 |
+
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
|
153 |
+
pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
|
154 |
+
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
155 |
+
dataloader = create_dataloader(data[task],
|
156 |
+
imgsz,
|
157 |
+
batch_size,
|
158 |
+
stride,
|
159 |
+
single_cls,
|
160 |
+
pad=pad,
|
161 |
+
rect=rect,
|
162 |
+
workers=workers,
|
163 |
+
min_items=opt.min_items,
|
164 |
+
prefix=colorstr(f'{task}: '))[0]
|
165 |
+
|
166 |
+
seen = 0
|
167 |
+
confusion_matrix = ConfusionMatrix(nc=nc)
|
168 |
+
names = model.names if hasattr(model, 'names') else model.module.names # get class names
|
169 |
+
if isinstance(names, (list, tuple)): # old format
|
170 |
+
names = dict(enumerate(names))
|
171 |
+
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
172 |
+
s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
|
173 |
+
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
174 |
+
dt = Profile(), Profile(), Profile() # profiling times
|
175 |
+
loss = torch.zeros(3, device=device)
|
176 |
+
jdict, stats, ap, ap_class = [], [], [], []
|
177 |
+
callbacks.run('on_val_start')
|
178 |
+
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
|
179 |
+
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
|
180 |
+
callbacks.run('on_val_batch_start')
|
181 |
+
with dt[0]:
|
182 |
+
if cuda:
|
183 |
+
im = im.to(device, non_blocking=True)
|
184 |
+
targets = targets.to(device)
|
185 |
+
im = im.half() if half else im.float() # uint8 to fp16/32
|
186 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
187 |
+
nb, _, height, width = im.shape # batch size, channels, height, width
|
188 |
+
|
189 |
+
# Inference
|
190 |
+
with dt[1]:
|
191 |
+
preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
|
192 |
+
preds = preds[2]
|
193 |
+
train_out = train_out[2]
|
194 |
+
|
195 |
+
# Loss
|
196 |
+
#if compute_loss:
|
197 |
+
# loss += compute_loss(train_out, targets)[2] # box, obj, cls
|
198 |
+
|
199 |
+
# NMS
|
200 |
+
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
|
201 |
+
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
202 |
+
with dt[2]:
|
203 |
+
preds = non_max_suppression(preds,
|
204 |
+
conf_thres,
|
205 |
+
iou_thres,
|
206 |
+
labels=lb,
|
207 |
+
multi_label=True,
|
208 |
+
agnostic=single_cls,
|
209 |
+
max_det=max_det)
|
210 |
+
|
211 |
+
# Metrics
|
212 |
+
for si, pred in enumerate(preds):
|
213 |
+
labels = targets[targets[:, 0] == si, 1:]
|
214 |
+
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
215 |
+
path, shape = Path(paths[si]), shapes[si][0]
|
216 |
+
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
217 |
+
seen += 1
|
218 |
+
|
219 |
+
if npr == 0:
|
220 |
+
if nl:
|
221 |
+
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
|
222 |
+
if plots:
|
223 |
+
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
224 |
+
continue
|
225 |
+
|
226 |
+
# Predictions
|
227 |
+
if single_cls:
|
228 |
+
pred[:, 5] = 0
|
229 |
+
predn = pred.clone()
|
230 |
+
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
|
231 |
+
|
232 |
+
# Evaluate
|
233 |
+
if nl:
|
234 |
+
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
235 |
+
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
|
236 |
+
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
237 |
+
correct = process_batch(predn, labelsn, iouv)
|
238 |
+
if plots:
|
239 |
+
confusion_matrix.process_batch(predn, labelsn)
|
240 |
+
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
|
241 |
+
|
242 |
+
# Save/log
|
243 |
+
if save_txt:
|
244 |
+
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
245 |
+
if save_json:
|
246 |
+
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
|
247 |
+
callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
248 |
+
|
249 |
+
# Plot images
|
250 |
+
if plots and batch_i < 3:
|
251 |
+
plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
|
252 |
+
plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
|
253 |
+
|
254 |
+
callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
|
255 |
+
|
256 |
+
# Compute metrics
|
257 |
+
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
|
258 |
+
if len(stats) and stats[0].any():
|
259 |
+
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
260 |
+
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
261 |
+
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
262 |
+
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
|
263 |
+
|
264 |
+
# Print results
|
265 |
+
pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
|
266 |
+
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
267 |
+
if nt.sum() == 0:
|
268 |
+
LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
|
269 |
+
|
270 |
+
# Print results per class
|
271 |
+
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
272 |
+
for i, c in enumerate(ap_class):
|
273 |
+
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
274 |
+
|
275 |
+
# Print speeds
|
276 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
277 |
+
if not training:
|
278 |
+
shape = (batch_size, 3, imgsz, imgsz)
|
279 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
|
280 |
+
|
281 |
+
# Plots
|
282 |
+
if plots:
|
283 |
+
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
284 |
+
callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
285 |
+
|
286 |
+
# Save JSON
|
287 |
+
if save_json and len(jdict):
|
288 |
+
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
289 |
+
anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
|
290 |
+
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
291 |
+
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
|
292 |
+
with open(pred_json, 'w') as f:
|
293 |
+
json.dump(jdict, f)
|
294 |
+
|
295 |
+
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
296 |
+
check_requirements('pycocotools')
|
297 |
+
from pycocotools.coco import COCO
|
298 |
+
from pycocotools.cocoeval import COCOeval
|
299 |
+
|
300 |
+
anno = COCO(anno_json) # init annotations api
|
301 |
+
pred = anno.loadRes(pred_json) # init predictions api
|
302 |
+
eval = COCOeval(anno, pred, 'bbox')
|
303 |
+
if is_coco:
|
304 |
+
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
|
305 |
+
eval.evaluate()
|
306 |
+
eval.accumulate()
|
307 |
+
eval.summarize()
|
308 |
+
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
309 |
+
except Exception as e:
|
310 |
+
LOGGER.info(f'pycocotools unable to run: {e}')
|
311 |
+
|
312 |
+
# Return results
|
313 |
+
model.float() # for training
|
314 |
+
if not training:
|
315 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
316 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
317 |
+
maps = np.zeros(nc) + map
|
318 |
+
for i, c in enumerate(ap_class):
|
319 |
+
maps[c] = ap[i]
|
320 |
+
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
321 |
+
|
322 |
+
|
323 |
+
def parse_opt():
|
324 |
+
parser = argparse.ArgumentParser()
|
325 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
|
326 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path(s)')
|
327 |
+
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
|
328 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
329 |
+
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
|
330 |
+
parser.add_argument('--iou-thres', type=float, default=0.7, help='NMS IoU threshold')
|
331 |
+
parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
|
332 |
+
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
|
333 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
334 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
335 |
+
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
336 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
337 |
+
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
338 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
339 |
+
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
340 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
341 |
+
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
|
342 |
+
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
|
343 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
344 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
345 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
346 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
347 |
+
parser.add_argument('--min-items', type=int, default=0, help='Experimental')
|
348 |
+
opt = parser.parse_args()
|
349 |
+
opt.data = check_yaml(opt.data) # check YAML
|
350 |
+
opt.save_json |= opt.data.endswith('coco.yaml')
|
351 |
+
opt.save_txt |= opt.save_hybrid
|
352 |
+
print_args(vars(opt))
|
353 |
+
return opt
|
354 |
+
|
355 |
+
|
356 |
+
def main(opt):
|
357 |
+
#check_requirements(exclude=('tensorboard', 'thop'))
|
358 |
+
|
359 |
+
if opt.task in ('train', 'val', 'test'): # run normally
|
360 |
+
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
|
361 |
+
LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
|
362 |
+
if opt.save_hybrid:
|
363 |
+
LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
|
364 |
+
run(**vars(opt))
|
365 |
+
|
366 |
+
else:
|
367 |
+
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
|
368 |
+
opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
|
369 |
+
if opt.task == 'speed': # speed benchmarks
|
370 |
+
# python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
|
371 |
+
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
|
372 |
+
for opt.weights in weights:
|
373 |
+
run(**vars(opt), plots=False)
|
374 |
+
|
375 |
+
elif opt.task == 'study': # speed vs mAP benchmarks
|
376 |
+
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
|
377 |
+
for opt.weights in weights:
|
378 |
+
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
|
379 |
+
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
|
380 |
+
for opt.imgsz in x: # img-size
|
381 |
+
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
|
382 |
+
r, _, t = run(**vars(opt), plots=False)
|
383 |
+
y.append(r + t) # results and times
|
384 |
+
np.savetxt(f, y, fmt='%10.4g') # save
|
385 |
+
os.system('zip -r study.zip study_*.txt')
|
386 |
+
plot_val_study(x=x) # plot
|
387 |
+
|
388 |
+
|
389 |
+
if __name__ == "__main__":
|
390 |
+
opt = parse_opt()
|
391 |
+
main(opt)
|
view.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|