SakshiRathi77
commited on
Upload benchmarks.py
Browse files- benchmarks.py +142 -0
benchmarks.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import platform
|
3 |
+
import sys
|
4 |
+
import time
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
FILE = Path(__file__).resolve()
|
10 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
11 |
+
if str(ROOT) not in sys.path:
|
12 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
13 |
+
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
14 |
+
|
15 |
+
import export
|
16 |
+
from models.experimental import attempt_load
|
17 |
+
from models.yolo import SegmentationModel
|
18 |
+
from segment.val import run as val_seg
|
19 |
+
from utils import notebook_init
|
20 |
+
from utils.general import LOGGER, check_yaml, file_size, print_args
|
21 |
+
from utils.torch_utils import select_device
|
22 |
+
from val import run as val_det
|
23 |
+
|
24 |
+
|
25 |
+
def run(
|
26 |
+
weights=ROOT / 'yolo.pt', # weights path
|
27 |
+
imgsz=640, # inference size (pixels)
|
28 |
+
batch_size=1, # batch size
|
29 |
+
data=ROOT / 'data/coco.yaml', # dataset.yaml path
|
30 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
31 |
+
half=False, # use FP16 half-precision inference
|
32 |
+
test=False, # test exports only
|
33 |
+
pt_only=False, # test PyTorch only
|
34 |
+
hard_fail=False, # throw error on benchmark failure
|
35 |
+
):
|
36 |
+
y, t = [], time.time()
|
37 |
+
device = select_device(device)
|
38 |
+
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
|
39 |
+
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
|
40 |
+
try:
|
41 |
+
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
|
42 |
+
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
|
43 |
+
if 'cpu' in device.type:
|
44 |
+
assert cpu, 'inference not supported on CPU'
|
45 |
+
if 'cuda' in device.type:
|
46 |
+
assert gpu, 'inference not supported on GPU'
|
47 |
+
|
48 |
+
# Export
|
49 |
+
if f == '-':
|
50 |
+
w = weights # PyTorch format
|
51 |
+
else:
|
52 |
+
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
53 |
+
assert suffix in str(w), 'export failed'
|
54 |
+
|
55 |
+
# Validate
|
56 |
+
if model_type == SegmentationModel:
|
57 |
+
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
58 |
+
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
|
59 |
+
else: # DetectionModel:
|
60 |
+
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
61 |
+
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
|
62 |
+
speed = result[2][1] # times (preprocess, inference, postprocess)
|
63 |
+
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
|
64 |
+
except Exception as e:
|
65 |
+
if hard_fail:
|
66 |
+
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
|
67 |
+
LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
|
68 |
+
y.append([name, None, None, None]) # mAP, t_inference
|
69 |
+
if pt_only and i == 0:
|
70 |
+
break # break after PyTorch
|
71 |
+
|
72 |
+
# Print results
|
73 |
+
LOGGER.info('\n')
|
74 |
+
parse_opt()
|
75 |
+
notebook_init() # print system info
|
76 |
+
c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
|
77 |
+
py = pd.DataFrame(y, columns=c)
|
78 |
+
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
79 |
+
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
80 |
+
if hard_fail and isinstance(hard_fail, str):
|
81 |
+
metrics = py['mAP50-95'].array # values to compare to floor
|
82 |
+
floor = eval(hard_fail) # minimum metric floor to pass
|
83 |
+
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
|
84 |
+
return py
|
85 |
+
|
86 |
+
|
87 |
+
def test(
|
88 |
+
weights=ROOT / 'yolo.pt', # weights path
|
89 |
+
imgsz=640, # inference size (pixels)
|
90 |
+
batch_size=1, # batch size
|
91 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
92 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
93 |
+
half=False, # use FP16 half-precision inference
|
94 |
+
test=False, # test exports only
|
95 |
+
pt_only=False, # test PyTorch only
|
96 |
+
hard_fail=False, # throw error on benchmark failure
|
97 |
+
):
|
98 |
+
y, t = [], time.time()
|
99 |
+
device = select_device(device)
|
100 |
+
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
|
101 |
+
try:
|
102 |
+
w = weights if f == '-' else \
|
103 |
+
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
|
104 |
+
assert suffix in str(w), 'export failed'
|
105 |
+
y.append([name, True])
|
106 |
+
except Exception:
|
107 |
+
y.append([name, False]) # mAP, t_inference
|
108 |
+
|
109 |
+
# Print results
|
110 |
+
LOGGER.info('\n')
|
111 |
+
parse_opt()
|
112 |
+
notebook_init() # print system info
|
113 |
+
py = pd.DataFrame(y, columns=['Format', 'Export'])
|
114 |
+
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
|
115 |
+
LOGGER.info(str(py))
|
116 |
+
return py
|
117 |
+
|
118 |
+
|
119 |
+
def parse_opt():
|
120 |
+
parser = argparse.ArgumentParser()
|
121 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path')
|
122 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
123 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
124 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
125 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
126 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
127 |
+
parser.add_argument('--test', action='store_true', help='test exports only')
|
128 |
+
parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
|
129 |
+
parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
|
130 |
+
opt = parser.parse_args()
|
131 |
+
opt.data = check_yaml(opt.data) # check YAML
|
132 |
+
print_args(vars(opt))
|
133 |
+
return opt
|
134 |
+
|
135 |
+
|
136 |
+
def main(opt):
|
137 |
+
test(**vars(opt)) if opt.test else run(**vars(opt))
|
138 |
+
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
opt = parse_opt()
|
142 |
+
main(opt)
|