SakshiRathi77 commited on
Commit
d02e46f
·
verified ·
1 Parent(s): ca26976

Upload benchmarks.py

Browse files
Files changed (1) hide show
  1. benchmarks.py +142 -0
benchmarks.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import platform
3
+ import sys
4
+ import time
5
+ from pathlib import Path
6
+
7
+ import pandas as pd
8
+
9
+ FILE = Path(__file__).resolve()
10
+ ROOT = FILE.parents[0] # YOLO root directory
11
+ if str(ROOT) not in sys.path:
12
+ sys.path.append(str(ROOT)) # add ROOT to PATH
13
+ # ROOT = ROOT.relative_to(Path.cwd()) # relative
14
+
15
+ import export
16
+ from models.experimental import attempt_load
17
+ from models.yolo import SegmentationModel
18
+ from segment.val import run as val_seg
19
+ from utils import notebook_init
20
+ from utils.general import LOGGER, check_yaml, file_size, print_args
21
+ from utils.torch_utils import select_device
22
+ from val import run as val_det
23
+
24
+
25
+ def run(
26
+ weights=ROOT / 'yolo.pt', # weights path
27
+ imgsz=640, # inference size (pixels)
28
+ batch_size=1, # batch size
29
+ data=ROOT / 'data/coco.yaml', # dataset.yaml path
30
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
31
+ half=False, # use FP16 half-precision inference
32
+ test=False, # test exports only
33
+ pt_only=False, # test PyTorch only
34
+ hard_fail=False, # throw error on benchmark failure
35
+ ):
36
+ y, t = [], time.time()
37
+ device = select_device(device)
38
+ model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
39
+ for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
40
+ try:
41
+ assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
42
+ assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
43
+ if 'cpu' in device.type:
44
+ assert cpu, 'inference not supported on CPU'
45
+ if 'cuda' in device.type:
46
+ assert gpu, 'inference not supported on GPU'
47
+
48
+ # Export
49
+ if f == '-':
50
+ w = weights # PyTorch format
51
+ else:
52
+ w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
53
+ assert suffix in str(w), 'export failed'
54
+
55
+ # Validate
56
+ if model_type == SegmentationModel:
57
+ result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
58
+ metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
59
+ else: # DetectionModel:
60
+ result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
61
+ metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
62
+ speed = result[2][1] # times (preprocess, inference, postprocess)
63
+ y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
64
+ except Exception as e:
65
+ if hard_fail:
66
+ assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
67
+ LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
68
+ y.append([name, None, None, None]) # mAP, t_inference
69
+ if pt_only and i == 0:
70
+ break # break after PyTorch
71
+
72
+ # Print results
73
+ LOGGER.info('\n')
74
+ parse_opt()
75
+ notebook_init() # print system info
76
+ c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
77
+ py = pd.DataFrame(y, columns=c)
78
+ LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
79
+ LOGGER.info(str(py if map else py.iloc[:, :2]))
80
+ if hard_fail and isinstance(hard_fail, str):
81
+ metrics = py['mAP50-95'].array # values to compare to floor
82
+ floor = eval(hard_fail) # minimum metric floor to pass
83
+ assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
84
+ return py
85
+
86
+
87
+ def test(
88
+ weights=ROOT / 'yolo.pt', # weights path
89
+ imgsz=640, # inference size (pixels)
90
+ batch_size=1, # batch size
91
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
92
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
93
+ half=False, # use FP16 half-precision inference
94
+ test=False, # test exports only
95
+ pt_only=False, # test PyTorch only
96
+ hard_fail=False, # throw error on benchmark failure
97
+ ):
98
+ y, t = [], time.time()
99
+ device = select_device(device)
100
+ for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
101
+ try:
102
+ w = weights if f == '-' else \
103
+ export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
104
+ assert suffix in str(w), 'export failed'
105
+ y.append([name, True])
106
+ except Exception:
107
+ y.append([name, False]) # mAP, t_inference
108
+
109
+ # Print results
110
+ LOGGER.info('\n')
111
+ parse_opt()
112
+ notebook_init() # print system info
113
+ py = pd.DataFrame(y, columns=['Format', 'Export'])
114
+ LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
115
+ LOGGER.info(str(py))
116
+ return py
117
+
118
+
119
+ def parse_opt():
120
+ parser = argparse.ArgumentParser()
121
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path')
122
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
123
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
124
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
125
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
126
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
127
+ parser.add_argument('--test', action='store_true', help='test exports only')
128
+ parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
129
+ parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
130
+ opt = parser.parse_args()
131
+ opt.data = check_yaml(opt.data) # check YAML
132
+ print_args(vars(opt))
133
+ return opt
134
+
135
+
136
+ def main(opt):
137
+ test(**vars(opt)) if opt.test else run(**vars(opt))
138
+
139
+
140
+ if __name__ == "__main__":
141
+ opt = parse_opt()
142
+ main(opt)