File size: 757 Bytes
0a6a4fd a6e78ad 0a6a4fd a6e78ad 0a6a4fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from transformers import pipeline
import gradio as gr
from huggingface_hub import HfFolder
token = HfFolder.get_token()
pipe = pipeline(model="SaladSlayer00/another_local", token='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')
def transcribe(rec=None, file=None):
if rec is not None:
audio = rec
elif file is not None:
audio = file
else:
return "Provide a recording or a file."
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(type="filepath")
],
outputs="text",
title="Whisper Small Italian",
description="Realtime demo for Italian speech recognition using a fine-tuned Whisper model.",
)
iface.launch() |