Spaces:
Runtime error
Runtime error
File size: 1,168 Bytes
7bde6c8 0c72fbc 7bde6c8 0c72fbc 7bde6c8 e9c304e 0c72fbc 5484ec0 0c72fbc e9c304e 7bde6c8 e9c304e 7bde6c8 0c72fbc 7bde6c8 e9c304e 7bde6c8 e9c304e 5484ec0 7bde6c8 2a6478f 7bde6c8 e9c304e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from inference import *
from script import *
import soundfile as sf
def preprocess_audio(audio_array):
try:
_, array = audio_array
sf.write('audio.wav', array, samplerate=48000, subtype='PCM_16')
return 'audio.wav'
except TypeError as e:
pass
def interface(Language, Audio_Inp):
audio_path = preprocess_audio(Audio_Inp)
if Language == 'Hausa':
voice_command = query(audio_path, 'ha')
state = activate_hausa(voice_command)
return state
# elif Language == 'English':
# command = query(Audio, lang ='en')
# state = activate_english(command)
# return state
elif Language == 'Yoruba':
voice_command = query(audio_path, 'yo')
state = activate_yoruba(voice_command)
return state
else:
pass
demo = gr.Interface(
fn=interface,
inputs=[gr.Dropdown(['Hausa', 'English', 'Yoruba'],
value = 'Hausa', label='Select Your Prefered Language'), gr.Audio(source ='microphone', type='numpy')],
outputs="text",
live=True
)
if __name__ == '__main__':
demo.launch(share=False) |