import gradio as gr from inference import * from script import * # import librosa import soundfile as sf def preprocess_audio(audio_array): try: _, array = audio_array sf.write('audio.wav', array, samplerate=48000, subtype='PCM_16') return 'audio.wav' except TypeError as e: pass def interface(Language, Audio_Inp): audio_path = preprocess_audio(Audio_Inp) if Language == 'Hausa': voice_command = query(audio_path, 'ha') state = activate_hausa(voice_command) return state # elif Language == 'English': # command = query(Audio, lang ='en') # state = activate_english(command) # return state elif Language == 'Yoruba': voice_command = query(audio_path, 'yo') state = activate_yoruba(voice_command) return state else: pass demo = gr.Interface( fn=interface, inputs=[gr.Dropdown(['Hausa', 'English', 'Yoruba'], value = 'Hausa', label='Select Your Prefered Language'), gr.Audio(source ='microphone', type='numpy')], outputs="text", live=True ) if __name__ == '__main__': demo.launch(share=False)