Spaces:
Running
Running
from turtle import title | |
import os | |
import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
from PIL import Image | |
import torch | |
import cv2 | |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig | |
from skimage.measure import label, regionprops | |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") | |
classes = list() | |
def create_mask(image,image_mask,alpha=0.7): | |
mask = np.zeros_like(image) | |
# copy your image_mask to all dimensions (i.e. colors) of your image | |
for i in range(3): | |
mask[:,:,i] = image_mask.copy() | |
# apply the mask to your image | |
overlay_image = cv2.addWeighted(mask,alpha,image,1-alpha,0) | |
return overlay_image | |
def rescale_bbox(bbox,orig_image_shape=(1024,1024),model_shape=352): | |
bbox = np.asarray(bbox)/model_shape | |
y1,y2 = bbox[::2] *orig_image_shape[0] | |
x1,x2 = bbox[1::2]*orig_image_shape[1] | |
return [int(y1),int(x1),int(y2),int(x2)] | |
def detect_using_clip(image,prompts=[],threshould=0.4): | |
h,w = image.shape[:2] | |
model_detections = dict() | |
predicted_images = dict() | |
inputs = processor( | |
text=prompts, | |
images=[image] * len(prompts), | |
padding="max_length", | |
return_tensors="pt", | |
) | |
with torch.no_grad(): # Use 'torch.no_grad()' to disable gradient computation | |
outputs = model(**inputs) | |
preds = outputs.logits.unsqueeze(1) | |
detection = outputs.logits[0] # Assuming class index 0 | |
for i,prompt in enumerate(prompts): | |
predicted_image = torch.sigmoid(preds[i][0]).detach().cpu().numpy() | |
predicted_image = np.where(predicted_image>threshould,255,0) | |
# extract countours from the image | |
lbl_0 = label(predicted_image) | |
props = regionprops(lbl_0) | |
prompt = prompt.lower() | |
model_detections[prompt] = [rescale_bbox(prop.bbox,orig_image_shape=image.shape[:2],model_shape=predicted_image.shape[0]) for prop in props] | |
predicted_images[prompt]= predicted_image | |
return model_detections , predicted_images | |
def visualize_images(image,detections,predicted_images,prompt): | |
alpha = 0.7 | |
# H,W = image.shape[:2] | |
prompt = prompt.lower() | |
image_resize = cv2.resize(image,(352,352)) | |
mask_image = create_mask(image=image_resize,image_mask=predicted_images[prompt]) | |
if prompt not in detections.keys(): | |
print("prompt not in query ..") | |
return image_resize | |
final_image = cv2.addWeighted(image_resize,alpha,mask_image,1-alpha,0) | |
return final_image | |
def shot(image, labels_text,selected_categoty): | |
prompts = labels_text.split(',') | |
prompts = list(map(lambda x: x.strip(),prompts)) | |
model_detections,predicted_images = detect_using_clip(image,prompts=prompts) | |
category_image = visualize_images(image=image,detections=model_detections,predicted_images=predicted_images,prompt=selected_categoty) | |
return category_image | |
iface = gr.Interface(fn=shot, | |
inputs = ["image","text","text"], | |
outputs = "image", | |
description ="Add an Image and list of category to be detected separated by commas", | |
title = "Zero-shot Image Classification with Prompt ", | |
examples=[ | |
["images/room.jpg","bed, table, plant, light, window",'plant'], | |
["images/image2.png","banner, building,door, sign","sign"] | |
], | |
# allow_flagging=False, | |
# analytics_enabled=False, | |
) | |
iface.launch() | |