Samarth991 commited on
Commit
8dbc829
1 Parent(s): c6ba654

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -12
app.py CHANGED
@@ -30,14 +30,29 @@ def detect_using_clip(image,prompts=[],threshould=0.4):
30
  )
31
  with torch.no_grad(): # Use 'torch.no_grad()' to disable gradient computation
32
  outputs = model(**inputs)
33
- preds = outputs.logits.unsqueeze(1)
 
 
 
 
 
 
34
 
35
- for i,prompt in enumerate(prompts):
36
- predicted_image = torch.sigmoid(preds[i][0]).detach().cpu().numpy()
37
- predicted_image = np.where(predicted_image>threshould,255,0)
38
- predicted_masks.append(predicted_image)
39
- bool_masks = [predicted_mask.astype('bool') for predicted_mask in predicted_masks]
40
- return bool_masks
 
 
 
 
 
 
 
 
 
41
 
42
  def visualize_images(image,predicted_images,brightness=15,contrast=1.8):
43
  alpha = 0.7
@@ -50,27 +65,28 @@ def visualize_images(image,predicted_images,brightness=15,contrast=1.8):
50
  return cv2.convertScaleAbs(resize_image_copy, alpha=contrast, beta=brightness)
51
 
52
  def shot(alpha,beta,image,labels_text):
 
53
  if "," in labels_text:
54
  prompts = labels_text.split(',')
55
  else:
56
  prompts = [labels_text]
57
-
58
  prompts = list(map(lambda x: x.strip(),prompts))
59
 
60
  mask_labels = [f"{prompt}_{i}" for i,prompt in enumerate(prompts)]
61
  cmap = plt.cm.tab20(np.arange(len(mask_labels)))[..., :-1]
62
 
63
- resize_image = cv2.resize(image,(352,352))
64
 
65
- predicted_images = detect_using_clip(image,prompts=prompts)
66
- category_image = overlay_masks(resize_image,np.stack(predicted_images,-1),labels=mask_labels,colors=cmap,alpha=alpha,beta=beta)
 
67
 
68
  return category_image
69
 
70
  iface = gr.Interface(fn=shot,
71
  inputs = [
72
  gr.Slider(0.1, 1, value=0.4, step=0.1 , label="alpha", info="Choose between 0.1 to 1"),
73
- gr.Slider(0.1, 1, value=1, step=0.1, label="beta", info="Choose between 0.1 to 1"),
74
  "image",
75
  "text"
76
  ],
 
30
  )
31
  with torch.no_grad(): # Use 'torch.no_grad()' to disable gradient computation
32
  outputs = model(**inputs)
33
+ #preds = outputs.logits.unsqueeze(1)
34
+ preds = nn.functional.interpolate(
35
+ outputs.logits.unsqueeze(1),
36
+ size=(test_image.shape[0], test_image.shape[1]),
37
+ mode="bilinear"
38
+ )
39
+ threshold = 0.1
40
 
41
+ flat_preds = torch.sigmoid(preds.squeeze()).reshape((preds.shape[0], -1))
42
+
43
+ # Initialize a dummy "unlabeled" mask with the threshold
44
+ flat_preds_with_treshold = torch.full((preds.shape[0] + 1, flat_preds.shape[-1]), threshold)
45
+ flat_preds_with_treshold[1:preds.shape[0]+1,:] = flat_preds
46
+
47
+ # Get the top mask index for each pixel
48
+ inds = torch.topk(flat_preds_with_treshold, 1, dim=0).indices.reshape((preds.shape[-2], preds.shape[-1]))
49
+ predicted_masks = []
50
+
51
+ for i in range(1, len(prompts)+1):
52
+ mask = np.where(inds==i,255,0)
53
+ predicted_masks.append(mask)
54
+
55
+ return predicted_masks
56
 
57
  def visualize_images(image,predicted_images,brightness=15,contrast=1.8):
58
  alpha = 0.7
 
65
  return cv2.convertScaleAbs(resize_image_copy, alpha=contrast, beta=brightness)
66
 
67
  def shot(alpha,beta,image,labels_text):
68
+ print(labels_text)
69
  if "," in labels_text:
70
  prompts = labels_text.split(',')
71
  else:
72
  prompts = [labels_text]
73
+ print(prompts)
74
  prompts = list(map(lambda x: x.strip(),prompts))
75
 
76
  mask_labels = [f"{prompt}_{i}" for i,prompt in enumerate(prompts)]
77
  cmap = plt.cm.tab20(np.arange(len(mask_labels)))[..., :-1]
78
 
 
79
 
80
+ predicted_masks = detect_using_clip(image,prompts=prompts)
81
+ bool_masks = [predicted_mask.astype('bool') for predicted_mask in predicted_masks]
82
+ category_image = overlay_masks(resize_image,np.stack(bool_masks,-1),labels=mask_labels,colors=cmap,alpha=alpha,beta=beta)
83
 
84
  return category_image
85
 
86
  iface = gr.Interface(fn=shot,
87
  inputs = [
88
  gr.Slider(0.1, 1, value=0.4, step=0.1 , label="alpha", info="Choose between 0.1 to 1"),
89
+ gr.Slider(0.1, 1, value=0.7, step=0.1, label="beta", info="Choose between 0.1 to 1"),
90
  "image",
91
  "text"
92
  ],