Samarth991 commited on
Commit
e9840df
1 Parent(s): 278cbaa

adding my LLM-chatbot model

Browse files
Files changed (2) hide show
  1. app.py +105 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch as th
3
+
4
+ from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain.embeddings import SentenceTransformerEmbeddings
7
+ from langchain.vectorstores import Chroma, FAISS
8
+ from langchain import HuggingFaceHub
9
+
10
+
11
+ DEVICE = 'cpu '
12
+ FILE_EXT = ['pdf','text','csv','word','wav']
13
+
14
+
15
+ def loading_pdf():
16
+ return "Loading..."
17
+
18
+
19
+ def process_documents(documents,data_chunk=1000,chunk_overlap=50):
20
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap)
21
+ texts = text_splitter.split_documents(documents[0])
22
+ return texts
23
+
24
+ def get_hugging_face_model(model_id,API_key,temperature=0.1):
25
+ chat_llm = HuggingFaceHub(huggingfacehub_api_token=API_key,
26
+ repo_id=model_id,
27
+ model_kwargs={"temperature": temperature, "max_new_tokens": 2048})
28
+ return chat_llm
29
+
30
+ def document_loading(file_data,doc_type='pdf',key=None):
31
+
32
+ embedding_model = SentenceTransformerEmbeddings(model_name='all-mpnet-base-v2',model_kwargs={"device": DEVICE})
33
+
34
+ document = None
35
+ if doc_type == 'pdf':
36
+ document = process_pdf_document(document_file_name=file_data)
37
+ elif doc_type == 'text':
38
+ document = process_text_document(document_file_name=file_data)
39
+ elif doc_type == 'csv':
40
+ document = process_csv_document(document_file_name=file_data)
41
+ elif doc_type == 'word':
42
+ document = process_word_document(document_file_name=file_data)
43
+
44
+ texts = process_documents(documents=document)
45
+ vectordb = FAISS.from_documents(documents=texts, embedding= embedding_model)
46
+
47
+
48
+ def process_text_document(document_file_name):
49
+ loader = TextLoader(document_file_name)
50
+ document = loader.load()
51
+ return document
52
+
53
+
54
+ def process_csv_document(document_file_name):
55
+ loader = CSVLoader(file_path=document_file_name)
56
+ document = loader.load()
57
+ return document
58
+
59
+
60
+ def process_word_document(document_file_name):
61
+ loader = UnstructuredWordDocumentLoader(file_path=document_file_name)
62
+ document = loader.load()
63
+ return document
64
+
65
+
66
+ def process_pdf_document(document_file_name):
67
+ loader = PDFMinerLoader(document_file_name)
68
+ document = loader.load()[0]
69
+ return document
70
+
71
+
72
+
73
+
74
+
75
+ css="""
76
+ #col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
77
+ """
78
+
79
+ title = """
80
+ <div style="text-align: center;max-width: 700px;">
81
+ <h1>Chat with Data • OpenAI/HuggingFace</h1>
82
+ <p style="text-align: center;">Upload a file from your computer, click the "Load data to LangChain" button, <br />
83
+ when everything is ready, you can start asking questions about the data you uploaded ;) <br />
84
+ This version is just for QA retrival so it will not use chat history, and uses Hugging face as LLM,
85
+ so you don't need any key</p>
86
+ </div>
87
+ """
88
+
89
+ with gr.Blocks(css=css) as demo:
90
+ with gr.Column(elem_id="col-container"):
91
+ gr.HTML(title)
92
+
93
+ with gr.Column():
94
+ with gr.Box():
95
+ LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='LLM',info='select the LLM to be used')
96
+ API_key = gr.Textbox(label="You OpenAI/Huggingface API key", type="password")
97
+ with gr.Column():
98
+ file_extension = gr.Dropdown(FILE_EXT, label="File Extensions", info="Select your files extensions!")
99
+ pdf_doc = gr.File(label="Load a File", file_types=FILE_EXT, type="file")
100
+ with gr.Row():
101
+ langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
102
+ load_pdf = gr.Button("Load file to langchain")
103
+
104
+ chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
105
+ question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ openai
2
+ tiktoken
3
+ chromadb
4
+ langchain
5
+ unstructured
6
+ unstructured[local-inference]
7
+ transformers
8
+