File size: 5,500 Bytes
889cf23
 
 
3cc543c
889cf23
 
 
 
 
 
 
42c6882
3cc543c
 
889cf23
 
 
 
3cc543c
 
 
889cf23
42c6882
 
889cf23
 
 
 
 
 
 
3cc543c
889cf23
 
 
 
 
 
 
 
 
 
 
 
 
 
3cc543c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889cf23
 
 
 
 
 
 
 
 
 
 
 
 
3cc543c
889cf23
 
3cc543c
889cf23
 
 
 
 
 
 
 
 
 
 
 
 
3cc543c
889cf23
 
3cc543c
889cf23
 
 
 
 
 
 
 
3cc543c
889cf23
 
 
 
 
3cc543c
889cf23
 
 
3cc543c
889cf23
 
3cc543c
889cf23
 
3cc543c
 
 
42c6882
889cf23
 
3cc543c
889cf23
 
3cc543c
889cf23
 
42c6882
889cf23
 
7312052
889cf23
 
3cc543c
889cf23
 
42c6882
889cf23
3cc543c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889cf23
3cc543c
 
 
889cf23
 
3cc543c
 
 
889cf23
 
3cc543c
 
 
889cf23
 
3cc543c
 
 
889cf23
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import json
import mimetypes
import os
from typing import Dict, Tuple, Union

import gradio as gr
import pandas as pd
import plotly
import plotly.express as px
import requests
from dotenv import load_dotenv

from gantry_callback.gantry_util import GantryImageToTextLogger
from gantry_callback.s3_util import make_unique_bucket_name

load_dotenv()

URL = os.getenv("ENDPOINT")
GANTRY_APP_NAME = os.getenv("GANTRY_APP_NAME")
GANTRY_KEY = os.getenv("GANTRY_API_KEY")
MAPBOX_TOKEN = os.getenv("MAPBOX_TOKEN")

examples = json.load(open("examples.json"))


def get_plotly_graph(
    latitude: float, longitude: float, location: str
) -> plotly.graph_objects.Figure:
    lat_long_data = [[latitude, longitude, location]]
    map_df = pd.DataFrame(lat_long_data, columns=["latitude", "longitude", "location"])

    px.set_mapbox_access_token(MAPBOX_TOKEN)
    fig = px.scatter_mapbox(
        map_df,
        lat="latitude",
        lon="longitude",
        hover_name="location",
        color_discrete_sequence=["fuchsia"],
        zoom=5,
        height=300,
    )
    fig.update_layout(mapbox_style="dark")
    fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
    return fig


def gradio_error():
    raise gr.Error("Unable to detect the location!")


def get_outputs(
    data: Dict[str, Union[str, float, None]]
) -> Tuple[str, str, plotly.graph_objects.Figure]:
    location, latitude, longitude = (
        data["location"],
        data["latitude"],
        data["longitude"],
    )
    if location is None:
        gradio_error()

    return (
        data["location"],
        f"{latitude},{longitude}",
        get_plotly_graph(latitude=latitude, longitude=longitude, location=location),
    )


def image_gradio(img_file: str) -> Tuple[str, str, plotly.graph_objects.Figure]:
    data = json.loads(
        requests.post(
            f"{URL}predict-image",
            files={
                "image": (
                    img_file,
                    open(img_file, "rb"),
                    mimetypes.guess_type(img_file)[0],
                )
            },
        ).text
    )

    return get_outputs(data=data)


def video_gradio(video_file: str) -> Tuple[str, str, plotly.graph_objects.Figure]:
    data = json.loads(
        requests.post(
            f"{URL}predict-video",
            files={
                "video": (
                    video_file,
                    open(video_file, "rb"),
                    "application/octet-stream",
                )
            },
        ).text
    )

    return get_outputs(data=data)


def url_gradio(url: str) -> Tuple[str, str, plotly.graph_objects.Figure]:
    data = json.loads(
        requests.post(
            f"{URL}predict-url",
            headers={"content-type": "text/plain"},
            data=url,
        ).text
    )

    return get_outputs(data=data)


with gr.Blocks() as demo:
    gr.Markdown("# GeoLocator")
    gr.Markdown(
        "### An app that guesses the location of an image 🌌, a video πŸ“Ή or a YouTube link πŸ”—."
    )
    with gr.Tab("Image"):
        with gr.Row():
            img_input = gr.Image(type="filepath", label="Image")
            with gr.Column():
                img_text_output = gr.Textbox(label="Location")
                img_coordinates = gr.Textbox(label="Coordinates")
                img_plot = gr.Plot()
        img_text_button = gr.Button("Go locate!")
        with gr.Row():
            # Flag button
            img_flag_button = gr.Button("Flag this output")
        gr.Examples(examples["images"], inputs=[img_input])
    with gr.Tab("Video"):
        with gr.Row():
            video_input = gr.Video(type="filepath", label="Video")
            with gr.Column():
                video_text_output = gr.Textbox(label="Location")
                video_coordinates = gr.Textbox(label="Coordinates")
                video_plot = gr.Plot()
        video_text_button = gr.Button("Go locate!")
        gr.Examples(examples["videos"], inputs=[video_input])
    with gr.Tab("YouTube Link"):
        with gr.Row():
            url_input = gr.Textbox(label="Link")
            with gr.Column():
                url_text_output = gr.Textbox(label="Location")
                url_coordinates = gr.Textbox(label="Coordinates")
                url_plot = gr.Plot()
        url_text_button = gr.Button("Go locate!")
        gr.Examples(examples["video_urls"], inputs=[url_input])

    # Gantry flagging for image #
    callback = GantryImageToTextLogger(application=GANTRY_APP_NAME, api_key=GANTRY_KEY)

    callback.setup(
        components=[img_input, img_text_output],
        flagging_dir=make_unique_bucket_name(prefix=GANTRY_APP_NAME, seed="420"),
    )

    img_flag_button.click(
        fn=lambda *args: callback.flag(args),
        inputs=[img_input, img_text_output, img_coordinates],
        outputs=None,
        preprocess=False,
    )
    ###################

    img_text_button.click(
        image_gradio,
        inputs=img_input,
        outputs=[img_text_output, img_coordinates, img_plot],
    )
    video_text_button.click(
        video_gradio,
        inputs=video_input,
        outputs=[video_text_output, video_coordinates, video_plot],
    )
    url_text_button.click(
        url_gradio,
        inputs=url_input,
        outputs=[url_text_output, url_coordinates, url_plot],
    )

    gr.Markdown(
        "Check out the [GitHub repository](https://github.com/samhita-alla/geolocator) that this demo is based off of."
    )

demo.launch()