Spaces:
Runtime error
Runtime error
File size: 5,500 Bytes
889cf23 3cc543c 889cf23 42c6882 3cc543c 889cf23 3cc543c 889cf23 42c6882 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 42c6882 889cf23 3cc543c 889cf23 3cc543c 889cf23 42c6882 889cf23 7312052 889cf23 3cc543c 889cf23 42c6882 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 889cf23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import json
import mimetypes
import os
from typing import Dict, Tuple, Union
import gradio as gr
import pandas as pd
import plotly
import plotly.express as px
import requests
from dotenv import load_dotenv
from gantry_callback.gantry_util import GantryImageToTextLogger
from gantry_callback.s3_util import make_unique_bucket_name
load_dotenv()
URL = os.getenv("ENDPOINT")
GANTRY_APP_NAME = os.getenv("GANTRY_APP_NAME")
GANTRY_KEY = os.getenv("GANTRY_API_KEY")
MAPBOX_TOKEN = os.getenv("MAPBOX_TOKEN")
examples = json.load(open("examples.json"))
def get_plotly_graph(
latitude: float, longitude: float, location: str
) -> plotly.graph_objects.Figure:
lat_long_data = [[latitude, longitude, location]]
map_df = pd.DataFrame(lat_long_data, columns=["latitude", "longitude", "location"])
px.set_mapbox_access_token(MAPBOX_TOKEN)
fig = px.scatter_mapbox(
map_df,
lat="latitude",
lon="longitude",
hover_name="location",
color_discrete_sequence=["fuchsia"],
zoom=5,
height=300,
)
fig.update_layout(mapbox_style="dark")
fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
return fig
def gradio_error():
raise gr.Error("Unable to detect the location!")
def get_outputs(
data: Dict[str, Union[str, float, None]]
) -> Tuple[str, str, plotly.graph_objects.Figure]:
location, latitude, longitude = (
data["location"],
data["latitude"],
data["longitude"],
)
if location is None:
gradio_error()
return (
data["location"],
f"{latitude},{longitude}",
get_plotly_graph(latitude=latitude, longitude=longitude, location=location),
)
def image_gradio(img_file: str) -> Tuple[str, str, plotly.graph_objects.Figure]:
data = json.loads(
requests.post(
f"{URL}predict-image",
files={
"image": (
img_file,
open(img_file, "rb"),
mimetypes.guess_type(img_file)[0],
)
},
).text
)
return get_outputs(data=data)
def video_gradio(video_file: str) -> Tuple[str, str, plotly.graph_objects.Figure]:
data = json.loads(
requests.post(
f"{URL}predict-video",
files={
"video": (
video_file,
open(video_file, "rb"),
"application/octet-stream",
)
},
).text
)
return get_outputs(data=data)
def url_gradio(url: str) -> Tuple[str, str, plotly.graph_objects.Figure]:
data = json.loads(
requests.post(
f"{URL}predict-url",
headers={"content-type": "text/plain"},
data=url,
).text
)
return get_outputs(data=data)
with gr.Blocks() as demo:
gr.Markdown("# GeoLocator")
gr.Markdown(
"### An app that guesses the location of an image π, a video πΉ or a YouTube link π."
)
with gr.Tab("Image"):
with gr.Row():
img_input = gr.Image(type="filepath", label="Image")
with gr.Column():
img_text_output = gr.Textbox(label="Location")
img_coordinates = gr.Textbox(label="Coordinates")
img_plot = gr.Plot()
img_text_button = gr.Button("Go locate!")
with gr.Row():
# Flag button
img_flag_button = gr.Button("Flag this output")
gr.Examples(examples["images"], inputs=[img_input])
with gr.Tab("Video"):
with gr.Row():
video_input = gr.Video(type="filepath", label="Video")
with gr.Column():
video_text_output = gr.Textbox(label="Location")
video_coordinates = gr.Textbox(label="Coordinates")
video_plot = gr.Plot()
video_text_button = gr.Button("Go locate!")
gr.Examples(examples["videos"], inputs=[video_input])
with gr.Tab("YouTube Link"):
with gr.Row():
url_input = gr.Textbox(label="Link")
with gr.Column():
url_text_output = gr.Textbox(label="Location")
url_coordinates = gr.Textbox(label="Coordinates")
url_plot = gr.Plot()
url_text_button = gr.Button("Go locate!")
gr.Examples(examples["video_urls"], inputs=[url_input])
# Gantry flagging for image #
callback = GantryImageToTextLogger(application=GANTRY_APP_NAME, api_key=GANTRY_KEY)
callback.setup(
components=[img_input, img_text_output],
flagging_dir=make_unique_bucket_name(prefix=GANTRY_APP_NAME, seed="420"),
)
img_flag_button.click(
fn=lambda *args: callback.flag(args),
inputs=[img_input, img_text_output, img_coordinates],
outputs=None,
preprocess=False,
)
###################
img_text_button.click(
image_gradio,
inputs=img_input,
outputs=[img_text_output, img_coordinates, img_plot],
)
video_text_button.click(
video_gradio,
inputs=video_input,
outputs=[video_text_output, video_coordinates, video_plot],
)
url_text_button.click(
url_gradio,
inputs=url_input,
outputs=[url_text_output, url_coordinates, url_plot],
)
gr.Markdown(
"Check out the [GitHub repository](https://github.com/samhita-alla/geolocator) that this demo is based off of."
)
demo.launch()
|