Spaces:
Runtime error
Runtime error
File size: 9,751 Bytes
f1aa2f0 889cf23 a1a2673 f1aa2f0 889cf23 f1aa2f0 3cc543c 889cf23 f1aa2f0 d9ac511 889cf23 f1aa2f0 889cf23 a1a2673 f1aa2f0 d9ac511 a1a2673 889cf23 3cc543c f1aa2f0 889cf23 42c6882 889cf23 f1aa2f0 889cf23 f1aa2f0 889cf23 f1aa2f0 889cf23 3cc543c 889cf23 f1aa2f0 61dd727 f1aa2f0 889cf23 f1aa2f0 889cf23 3cc543c f1aa2f0 3cc543c f1aa2f0 3cc543c f1aa2f0 3cc543c f1aa2f0 3cc543c f1aa2f0 3cc543c f1aa2f0 a1a2673 889cf23 3cc543c 889cf23 a1a2673 3cc543c f1aa2f0 a1a2673 889cf23 3cc543c 889cf23 3cc543c f1aa2f0 a1a2673 889cf23 3cc543c 889cf23 d9ac511 889cf23 3cc543c 889cf23 3cc543c 889cf23 3cc543c 42c6882 34a0e77 889cf23 7312052 889cf23 3cc543c 889cf23 42c6882 889cf23 3cc543c 889cf23 3cc543c 889cf23 34a0e77 889cf23 3cc543c 889cf23 3cc543c d9ac511 889cf23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import base64
import json
import mimetypes
# import mimetypes
import os
import sys
from io import BytesIO
from typing import Dict, Tuple, Union
import banana_dev as banana
import geopy.distance
import gradio as gr
import pandas as pd
import plotly
import plotly.express as px
# import requests
from dotenv import load_dotenv
from smart_open import open as smartopen
sys.path.append("..")
from gantry_callback.gantry_util import GantryImageToTextLogger # noqa: E402
from gantry_callback.s3_util import ( # noqa: E402
add_access_policy,
enable_bucket_versioning,
get_or_create_bucket,
get_uri_of,
make_key,
make_unique_bucket_name,
)
from gantry_callback.string_img_util import read_b64_string # noqa: E402
load_dotenv()
URL = os.getenv("ENDPOINT")
GANTRY_APP_NAME = os.getenv("GANTRY_APP_NAME")
GANTRY_KEY = os.getenv("GANTRY_API_KEY")
MAPBOX_TOKEN = os.getenv("MAPBOX_TOKEN")
BANANA_API_KEY = os.getenv("BANANA_API_KEY")
BANANA_MODEL_KEY = os.getenv("BANANA_MODEL_KEY")
examples = json.load(open("examples.json"))
def compute_distance(map_data: Dict[str, Dict[str, Union[str, float, None]]]):
hierarchy_lat, hierarchy_long = (
map_data["hierarchy"]["latitude"],
map_data["hierarchy"]["longitude"],
)
coarse_lat, coarse_long = (
map_data["coarse"]["latitude"],
map_data["coarse"]["longitude"],
)
fine_lat, fine_long = (
map_data["fine"]["latitude"],
map_data["fine"]["longitude"],
)
hierarchy_to_coarse = geopy.distance.geodesic(
(hierarchy_lat, hierarchy_long), (coarse_lat, coarse_long)
).miles
hierarchy_to_fine = geopy.distance.geodesic(
(hierarchy_lat, hierarchy_long), (fine_lat, fine_long)
).miles
return hierarchy_to_coarse, hierarchy_to_fine
def get_plotly_graph(
map_data: Dict[str, Dict[str, Union[str, float, None]]]
) -> plotly.graph_objects.Figure:
hierarchy_to_coarse, hierarchy_to_fine = compute_distance(map_data)
what_to_consider = {"hierarchy"}
if hierarchy_to_coarse > 30:
what_to_consider.add("coarse")
if hierarchy_to_fine > 30:
what_to_consider.add("fine")
size_map = {"hierarchy": 3, "fine": 1, "coarse": 1}
lat_long_data = []
for subdivision, location_data in map_data.items():
if subdivision in what_to_consider:
lat_long_data.append(
[
subdivision,
float(location_data["latitude"]),
float(location_data["longitude"]),
location_data["location"],
size_map[subdivision],
]
)
map_df = pd.DataFrame(
lat_long_data,
columns=["subdivision", "latitude", "longitude", "location", "size"],
)
px.set_mapbox_access_token(MAPBOX_TOKEN)
fig = px.scatter_mapbox(
map_df,
lat="latitude",
lon="longitude",
hover_name="location",
hover_data=["latitude", "longitude", "subdivision"],
color="subdivision",
color_discrete_map={
"hierarchy": "fuchsia",
"coarse": "blue",
"fine": "blue",
},
zoom=2,
height=500,
size="size",
)
fig.update_layout(mapbox_style="dark")
fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
return fig
def gradio_error():
raise gr.Error("Unable to detect the location!")
def get_outputs(
data: Dict[str, Dict[str, Union[str, float, None]]]
) -> Tuple[str, str, plotly.graph_objects.Figure]:
if data is None:
gradio_error()
location, latitude, longitude = (
data["hierarchy"]["location"],
data["hierarchy"]["latitude"],
data["hierarchy"]["longitude"],
)
if location is None:
gradio_error()
return (
location,
f"{latitude},{longitude}",
get_plotly_graph(map_data=data),
)
def image_gradio(img_file: str) -> Tuple[str, str, plotly.graph_objects.Figure]:
# data = json.loads(
# requests.post(
# f"{URL}predict-image",
# files={
# "image": (
# img_file,
# open(img_file, "rb"),
# mimetypes.guess_type(img_file)[0],
# )
# },
# ).text
# )
with open(img_file, "rb") as image_file:
image_bytes = BytesIO(image_file.read())
data = banana.run(
BANANA_API_KEY,
BANANA_MODEL_KEY,
{
"image": base64.b64encode(image_bytes.getvalue()).decode("utf-8"),
"filename": os.path.basename(img_file),
},
)["modelOutputs"][0]
return get_outputs(data=data)
def _upload_video_to_s3(video_b64_string):
bucket = get_or_create_bucket(
make_unique_bucket_name(prefix="geolocator-app", seed="420")
)
enable_bucket_versioning(bucket)
add_access_policy(bucket)
data_type, video_buffer = read_b64_string(video_b64_string, return_data_type=True)
video_bytes = video_buffer.read()
key = make_key(video_bytes, filetype=data_type)
s3_uri = get_uri_of(bucket, key)
with smartopen(s3_uri, "wb") as s3_object:
s3_object.write(video_bytes)
return s3_uri
def video_gradio(video_file: str) -> Tuple[str, str, plotly.graph_objects.Figure]:
# data = json.loads(
# requests.post(
# f"{URL}predict-video",
# files={
# "video": (
# video_file,
# open(video_file, "rb"),
# "application/octet-stream",
# )
# },
# ).text
# )
with open(video_file, "rb") as video_file:
video_b64_string = base64.b64encode(
BytesIO(video_file.read()).getvalue()
).decode("utf8")
video_mime = mimetypes.guess_type(video_file)[0]
s3_uri = _upload_video_to_s3(f"data:{video_mime};base64," + video_b64_string)
data = banana.run(
BANANA_API_KEY,
BANANA_MODEL_KEY,
{
"video": s3_uri,
"filename": os.path.basename(video_file),
},
)["modelOutputs"][0]
return get_outputs(data=data)
def url_gradio(url: str) -> Tuple[str, str, plotly.graph_objects.Figure]:
# data = json.loads(
# requests.post(
# f"{URL}predict-url",
# headers={"content-type": "text/plain"},
# data=url,
# ).text
# )
data = banana.run(BANANA_API_KEY, BANANA_MODEL_KEY, {"url": url},)[
"modelOutputs"
][0]
return get_outputs(data=data)
with gr.Blocks() as demo:
gr.Markdown("# GeoLocator")
gr.Markdown(
"### An app that guesses the location of an image π or a YouTube video link π."
)
with gr.Tab("Image"):
with gr.Row():
img_input = gr.Image(type="filepath", label="Image")
with gr.Column():
img_text_output = gr.Textbox(label="Location")
img_coordinates = gr.Textbox(label="Coordinates")
img_plot = gr.Plot()
img_text_button = gr.Button("Go locate!")
with gr.Row():
# Flag button
img_flag_button = gr.Button("Flag this output")
gr.Examples(examples["images"], inputs=[img_input])
# with gr.Tab("Video"):
# with gr.Row():
# video_input = gr.Video(type="filepath", label="Video")
# with gr.Column():
# video_text_output = gr.Textbox(label="Location")
# video_coordinates = gr.Textbox(label="Coordinates")
# video_plot = gr.Plot()
# video_text_button = gr.Button("Go locate!")
# gr.Examples(examples["videos"], inputs=[video_input])
with gr.Tab("YouTube Link"):
with gr.Row():
url_input = gr.Textbox(label="Link")
with gr.Column():
url_text_output = gr.Textbox(label="Location")
url_coordinates = gr.Textbox(label="Coordinates")
url_plot = gr.Plot()
url_text_button = gr.Button("Go locate!")
gr.Examples(examples["video_urls"], inputs=[url_input])
# Gantry flagging for image #
callback = GantryImageToTextLogger(application=GANTRY_APP_NAME, api_key=GANTRY_KEY)
callback.setup(
components=[img_input, img_text_output],
flagging_dir=make_unique_bucket_name(prefix=GANTRY_APP_NAME, seed="420"),
)
img_flag_button.click(
fn=lambda *args: callback.flag(args),
inputs=[img_input, img_text_output, img_coordinates],
outputs=None,
preprocess=False,
)
###################
img_text_button.click(
image_gradio,
inputs=img_input,
outputs=[img_text_output, img_coordinates, img_plot],
)
# video_text_button.click(
# video_gradio,
# inputs=video_input,
# outputs=[video_text_output, video_coordinates, video_plot],
# )
url_text_button.click(
url_gradio,
inputs=url_input,
outputs=[url_text_output, url_coordinates, url_plot],
)
gr.Markdown(
"Check out the [GitHub repository](https://github.com/samhita-alla/geolocator) that this demo is based off of."
)
gr.Markdown(
"#### To understand what subdivision means, refer to the [Geolocation paper](https://openaccess.thecvf.com/content_ECCV_2018/papers/Eric_Muller-Budack_Geolocation_Estimation_of_ECCV_2018_paper.pdf)."
)
gr.Markdown(
"#### TL;DR Fine and Coarse are spatial resolutions and Hierarchy generates predictions at fine scale but incorporates knowledge from coarse and middle partitionings."
)
demo.launch()
|