import streamlit as st import pdfplumber from transformers import pipeline, RagTokenizer, RagRetriever, RagSequenceForGeneration def preprocess_text(text): # Remove extra whitespace and normalize line breaks text = text.replace('\n', ' ').replace('\r', '') text = ' '.join(text.split()) return text st.title("Chat with Your PDF") uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") if uploaded_file is not None: with st.spinner('Reading PDF...'): # Extract text from PDF using pdfplumber with pdfplumber.open(uploaded_file) as pdf: text = "" for page in pdf.pages: text += page.extract_text() text = preprocess_text(text) st.success('PDF successfully read and preprocessed!') # Display some text from the PDF st.text_area("Extracted Text", text[:1000], height=300) # Initialize the RAG model tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True) rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq") # Tokenize the text for RAG input_texts = text.split('. ') input_ids = tokenizer(input_texts, return_tensors="pt", padding=True, truncation=True, max_length=512) # Build context embeddings for retrieval context_input_ids = retriever(input_ids.input_ids, input_ids.input_ids, num_beams=2) question = st.text_input("Ask a question about the PDF:") if question: with st.spinner('Searching for answer...'): # Tokenize the question question_ids = tokenizer(question, return_tensors="pt")['input_ids'] # Generate answer using RAG generated = rag_model.generate(input_ids=context_input_ids.input_ids, context_input_ids=question_ids, num_beams=2) rag_answer = tokenizer.decode(generated[0], skip_special_tokens=True) st.write(rag_answer)