OCR / app.py
Sana1207's picture
Update app.py
f959003 verified
raw
history blame
3.21 kB
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import streamlit as st
# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2VLForConditionalGeneration.from_pretrained(
# "Qwen/Qwen2-VL-72B-Instruct",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
# Streamlit app title
st.title("OCR Image Text Extraction")
# File uploader for images
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
# Open the uploaded image file
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "image",
},
{"type": "text", "text": "Run Optical Character Recognition on the image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cpu")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# Display extracted text
st.subheader("Extracted Text:")
st.write(output_text)
# Keyword search functionality
st.subheader("Keyword Search")
search_query = st.text_input("Enter keywords to search within the extracted text")
if search_query:
# Check if the search query is in the extracted text
if search_query.lower() in output_text.lower():
highlighted_text = output_text.replace(search_query, f"**{search_query}**")
st.write(f"Matching Text: {highlighted_text}")
else:
st.write("No matching text found.")