from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import streamlit as st # default: Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto" ) # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. # model = Qwen2VLForConditionalGeneration.from_pretrained( # "Qwen/Qwen2-VL-72B-Instruct", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # default processer processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. # min_pixels = 256*28*28 # max_pixels = 1280*28*28 # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) # Streamlit app title st.title("OCR Image Text Extraction") # File uploader for images uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: # Open the uploaded image file image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) messages = [ { "role": "user", "content": [ { "type": "image", "image": "image", }, {"type": "text", "text": "Run Optical Character Recognition on the image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cpu") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) # Display extracted text st.subheader("Extracted Text:") st.write(output_text) # Keyword search functionality st.subheader("Keyword Search") search_query = st.text_input("Enter keywords to search within the extracted text") if search_query: # Check if the search query is in the extracted text if search_query.lower() in output_text.lower(): highlighted_text = output_text.replace(search_query, f"**{search_query}**") st.write(f"Matching Text: {highlighted_text}") else: st.write("No matching text found.")